
Hydrologicat Sciences - Journal - des Sciences Hydrologiques, 28, 3, 9/1983 

On backwater effects in linear diffusion flood 
routing 

JAMES C I , D00GE 
Department of Civil Engineering, University 
College, Upper Merrion Street, Dublin 2, 
Ireland 
ZBIGNIEW W. KUNDZEWICZ 
Institute of Geophysics, Polish Academy of 
Sciences, Warsaw, Poland 
JAROSiAW J. NAPIÔRKOWSKI 
University College, Upper Merrion Street, 
Dublin 2, Ireland. Also Institute of 
Geophysics, Polish Academy of Sciences 

ABSTRACT The effect of the downstream boundary 
condition on the flow in a channel reach as predicted by 
the linear diffusion analogy model is analysed by both 
Laplace transformation and by modal analysis. In each 
case the solution takes the form of an infinite series. 
It is shown that the series based on Laplace transform­
ation is highly convergent for small times and the series 
based on modal analysis is highly convergent for medium 
and longer times. 

Sur les effets de remous dans le calcul de propagation 
des crues par la diffusion linéaire 
RESUME L'effet des conditions aux limites aval sur le 
débit d'un bief de rivière, tel q'il est prévu par le 
modèle analogique de diffusion linéaire, est analysé ici 
par la transformation de Laplace et aussi par l'analyse 
modale. Dans ces deux cas, la solution prend la forme 
d'une série infinie. On montre aussi que la série basée 
sur la transformation de Laplace converge rapidement pour 
des temps courts et que la série basée sur l'analyse 
modale converge rapidement pour des temps moyens et longs. 

INTRODUCTION 

The linear parabolic model of unsteady river flow (diffusion analogy) 
has the advantage of being a simple means of flood routing. The 
analysis of the order of magnitude of elements of the St Venant 
equations of open channel flow (Henderson, 1966; Kuchment, 1972) 
indicates that the inertia terms may in many cases be neglected. 
Different derivations of the linear diffusion analogy models appear 
in hydrological literature. Some of them are presented as 
hydrodynamic models obtained by simplification of the complete model 
(neglect or approximation of several terms), with in some cases 
linearization, while others are presented as conceptual models. It 
is common to both types of approaches that only an upstream boundary 
condition is used, i.e. the assumption of a semi-infinite reach is 
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made. 
This assumption of a semi-infinite reach allows a simple form of 

solution to be obtained, but a disadvantage of the approach is the 
limitation to the case when the backwater effects are negligible. 
There is actually no theoretical reason why the backwater effect 
should not be included in the linear diffusion analogy model, so 
that both a downstream and an upstream boundary condition could be 
included together with a finite river reach rather than a 
semi-infinite reach. At the cost of introducing more complicated 
mathematics than in the semi-infinite case, the solution of the 
finite reach problem can significantly increase the range of 
validity of the linear diffusion analogy model. One can use the 
linear framework for the simulation of the system reactions to 
sudden changes occurring at the lower boundary of the reach (e.g. 
dam break, obstruction of flow, change of discharge policy at the 
regulation structure or flood from a tributary). The semi-infinite 
model obviously fails in all these situations. 

MATHEMATICAL FORMULATION OF THE PROBLEM 

Let us assume that the channel reach is of finite length L and that 
the activating inputs are physically located at both boundaries to 
allow for the possibility that the backwater effect cannot be 
neglected. Assume that the system be described by the linear 
convective-diffusion equation 

T T + C 7 D — y (1) 

at dx 3xz 

where Q(x, t) is the flow rate, c is the advective velocity, and D is 
the coefficient of hydraulic diffusivity. These parameters can be 
related to the hydraulic properties and the reference flow condition 
for a uniform channel. Several approaches are possible, all based 
on both linearization and simplification of the hydrodynamic equation 
of the open channel flow (Forcheimer, 1930; Hayami, 1951; Lighthill 
& Whitham, 1955; Dooge & Harley, 1967; Dooge & Napiorkowski, 1982). 

The initial condition is given by 

Q(x, 0) = Q0(x) 0 < x < L (2) 

and the boundary conditions by 

Q(0, t) = Qu(t) (3) 

Q(L, t) = Qd(t) (4) 

If the flow is initially steady and uniform along the whole reach, 
the above formulation is valid not only for flow rate perturbations 
from a reference value but also for instantaneous flow rate values. 

The essential problem involved in the solution of equation (1) 
subject to equations (2), (3), (4) is to find the flow rates in an 
intermediate cross section. This can be accomplished analytically 
in at least two ways: (a) using the Laplace transform method; 
(b) using modal analysis (separation of variables). 
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The theoretical principles of these two methods can be found in 
the extensive mathematical literature (the Laplace transform method 
in Doetsch, 1961; or Osiowski, 1972; and the modal analysis method 
in Carrier & Pearson, 1976). 

USE OF DIMENSIUNLESS VARIABLES 

It is convenient to analyse the problem and to evaluate the result 
in terms of dimensionless independent variables. The flow at any 
point and any time can be written as 

Q(x, t) = f(x, t, L, c, D, Q0, Q U ) Qd) (5) 

If we define a dimensionless flow rate as 

Q(x, t) = Q(x, t)/Q^ (6) 

where Q 0 is either the steady uniform reference discharge or some 
convenient constant reference discharge and the boundary conditions 
as 

Qu(t) = Qu(t)/Q0 (7) 

and 

Qd(t) = Qd<t>/Q0 <8> 

then the basic equation can be written as 

Q(x, t) = f(x, y, L, c, D, QQ, Qu, Qd) (9) 

Since the five remaining dimensional variables in equation (9) are 
all kinematic (i.e. have dimensions only of length and time) they 
can be reduced to three dimensionless variables. 

If we wish to study in particular the effect of the distance (L) 
between the upstream and downstream boundaries on the flow at an 
intermediate fixed point, x, then it is convenient to include L in 
only one of three dimensionless variables so that its effect can be 
isolated. When this is done we get 

Q(x, t) = f(cx/D, c2t/D, cL/D, QQ, Qu, Qd) (10) 

In effect, we have a dimensionless distance given by 

x̂  = cx/D (11) 

and a dimensionless time given by 

t_ = c2t/D (12) 

and a dimensionless length of channel given by 

L = cL/D (13) 
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E q u a t i o n (1) now becomes 

3fl(*. -t) + 3fl(*. t ) = 32fl(x, t) 
31 3x 3x2 

which is completely dimensionless. 
This equation can be reduced to a pure diffusion form, that is 

32Q' _ 3Q' 
3x2 3t 

by using the auxiliary transformation 

(15) 

Q*(x, _t) = exp(-x/2 + t/4) Q(x, t) (16) 

The transformation used changes the initial condition to 

Q'(x, 0) = exp(-x/2)Q0(x) = qQ(x) (17) 

and the boundary condition to 

Q'(0, t) = exp(jt/4) Qu(l) = Qù<±> <18> 

Q'(L, t) = exp(-L/2 + t/4) Qd(jt) = Qd(l) (19) 

The equation to be solved is now in canonical form as equation (15). 

LAPLACE TRANSFORM METHOD 

The formulation in the Laplace transform domain of the problem given 
by equation (15), the initial condition (17) and the boundary 
conditions (18, 19) reads 

2 

l^f - sq = qQ(x) (20) 

where q(x, s) is the Laplace transform of the function Q'Cx, t) . 
The general solution for equation (20) is the sum of the general 

solution of the corresponding homogeneous equation and a particular 
solution of the inhomogeneous equation. The general solution of the 
homogeneous equation is given by 

qn(3£, s) = A(s) exp(-yÇ x.) + B(s) exp(/s x.) (21) 

The solution of equation (20) for the case of q0(x) = &(x) is given 
by the Green's function (Osiowski, 1972) 

K(x) = sh(v^ x)//s (22) 

where sh(•) is the function hyperbolic sine. The general solution of 
the inhomogeneous equation is 

q(x., s) = A(s)exp(-v/s x) + B(s)exp(/s x) 

+ / - s h [ / s (x - a) ] q 0 (a)da/ /s~ (23) 
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The functions A(s) and B(s) can be found from the equations for the 
upstream and downstream boundary conditions. 

At the upstream boundary (x = 0) we have 

qu(s) = A(s) + B(s) (24) 

and at the downstream boundary (JC = L.) we have 

qd(s) = A(s)exp(-t/i3 L) + B(s)exp(>/s _L) 

+ /- shfvs" (L- a)]q0(a)da/^ (25) 

where qu(s) and q<j(s) are the Laplace transforms of Qu(jO and Q^OO 
respectively. Solving equations (24, 25) for the unknown functions 
in equation (23) we obtain 

qu(s)exp(A L) - qd(s) + /— sh[>/s (L. - a)]q0(a)da//s 
A(s) = • • (26) 

exp( h) - exp(-y^ L) 

Qd(s) - qu(s)exp(-ys" L) - /— sh[/s (L - a)]qQ(a)da/v^ 
B(s) = = = (27) 

exp(/s Li) - exp(-/s L) 

and substituting these values in equation (23) we get 

shft/s <L. - 3£) ] shy's x. 
q(x , s) = q u ( s ) ._ + q d ( s ) , "r -, 

— s h / s L sh / s 1, 
sh / s x -L r 7- -, , , fx /— s h [ / s (L - a ) ] q 0 ( a ) d a + /— s h [ / s Ox - a ) ] q 0 ( a ) d a / i ^ 

/ s shvs L ° ° 
(28) 

which gives in the Laplace transform domain the relationship between 
the flow at an intermediate point and the given flows at the upstream 
and downstream boundaries. Assume, that zero initial condition holds 
along the whole reach considered, that is q0(x) = 0 for 0 < JC < _L. 
Then the system response to excitation at both terminating cross 
sections reads in the Laplace transform domain 

q(x, s) = hu(x, s).qu(s) + hd(jc, s).qd(s) (29) 

where 

hu(x, s) = sh[/I (L - x)]/sh(/s L) (30) 

is the system function (i.e. the Laplace transform of the impulse 
response) for an upstream input and 

hd(x, s) = sh(/s 3c)/sh(/s L_) (31) 

is the system function for a downstream input. 
The inverse Laplace transform of these complicated equations can 

be obtained in series form (Doetsch, 1961). We can write 
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equat ion (30) as 

h u ( x , s) = {exp(.-/s x) - exp[-v /s(2L - x ) ] } [ l - exp ( - v^2L,) ] ~* (32a) 

and expand the denominator to give 

h ' ( x , s) = [exp(- / sx) - exp[-v /s(2I i - x)]Z°= e x p ( - / s 2nL) (32b) 

Separa t ing the two p a r t s of denominator g ives 

CO 7— CO T — 

h ' ( x , s) = I exp[- /s(2nL + x>] - £ exp[- /s (2nL + 2L - x) ] (32c) 
u — n=Q — — n=o — — — 

and simplifying the second term we can write 

h*(x, s) = E°° exp[-v/s(2nL + x) ] - E°° exp[-v^"(2nL - x)] (32d) 
u — n=o — — n=i — — 

which can be combined into a single series 

4-co -j— 

hu(x, s) = E_ooexp[-A(2nL + x) ] (32e) 

For 0 < x < L, the following transform pair is applicable 

F(s) = exp(-a^); f(t) = a exp(-a2/4t)/(2/ïït3/2) ; a > 0 

because both 2nL + x_ > 0 and 2nL - x > 0. Therefore we have after 
interchanging the sum and the inverse Laplace operator the inverse 
transform of function (30) in the form 

2nL + x -(2nL + x K 
huQ£. !> = L Uh/fx, s)} = E_ ~ ~ exp[ ~ ~ — ] (33) 

2 V IT t " ' _ 

A similar development in series of equation (31) leads to 

+oo 2nk + k ~ E -(2nL + L - x) 
hà(x, t) = L-Mh^x, s)} = Z_œ 2 / F t 3 / 2 - exp[ ^ ~ 1 (34) 

The original function Q'Cx, JO in the time domain is determined from 
the corresponding boundary conditions through the relationship 

Q'(x, t) = QuCt) * hu(x, Jt) + Q^(jc) * h^(x, Jt) (35) 

Since the multiplication of the functions in equation (29) becomes 
convolution on inversion to the time domain, returning to 
dimensionless variables of the convective diffusion analogy of 
equation (14) one obtains 

Q(x, Jt) = expU/2 - t/4) {[exp(Jc/4) Qu(t)] * h^(x, t) 

+ [exp(-L/2 + jt/4) Q^jc)] * h^(x, Jc) } 

= Qu
(l> * hu(*> 1 } + Sd(±) * hd(*> 1> <36> 
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where 

hu(x, t) = exp(x/2 - t/4) hu(x, t) (37) 

and 

h d U , t_) = exp[-a - x)/2 ~ 1/4] hd(x, _t) (38) 

are, respectively, the impulse responses in the time domain for the 
upstream and downstream boundary conditions. 

MODAL ANALYSIS 

Another powerful method for the solution of the linear diffusion 
analogy model (15) for a finite reach is modal analysis, which 
enables the partial differential equation to be transformed to a set 
of ordinary differential equations by means of the method of 
eigenfunction expansions (Carrier & Pearson, 1976). 

The solution of the problem can be found by separating the 
variables and writing 

Q' (x, _t) = CtOt) 3(x) (39) 

Substitution from equation (39) into the differential equation (15) 
gives us the double relationship 

a(jt) dt B(x) dx 

The two members of equation (40) each depend on a single independent 
variable x_ or t_ and are linked through the constant -A. 

In effect the separation of the variable leads to the method of 
eigenfunction expansion and the solution is sought in the form of 
the following series 

Q'(x, t) = Znan(t_)Bn(x) (41) 

where the set of functions 3n(x) is the set of eigenfunctions 
associated with the related homogeneous problem (i.e. with both 
boundary conditions equal to zero) , and the set of functions an(jt) 
are Fourier coefficients of Q'(x_, jt) relative to the system {$n(x_)}. 

One can see from equation (40) that the method of eigenfunction 
expansion leads to the eigenvalue problem 

d2 

— 2 - B(x) + A(3(x) = 0 
0 < x < L (42) 

6(0) = 0, 3(L) = 0 

for which the eigenvalues are 

An = (nTr/L)
2 (43) 

and the corresponding eigenfunctions are 
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BnOO = sin(nTTx/L) n = 1, 2, ... (44) 

For these eigenfunctions the normalizing constants are given by 

J- g^(x) dx = L/2 (45) 
JQ n — — — 

Because of the orthogonality of the eigenfunctions, that is 

L/2 i = j 

0 i f j 
/- 3i(x) 3j(x) dx = j (46) 

the Fourier coefficients are related to the solution by the formula 

fL 

= /- Q'Oc, _t) sin(n7rx/L) dx/(L/2) (47) 

By integrating the righthand side of equation (47) twice by parts 
and making use of the original equation (15) one gets 

an(t) = 2[Qu(t) - (-l)
n Q^(t)]/<mr) 

2L L 9Q'(x, t) nTTx 
~=^ j sin (—=) dx (48) 

n2TT2 Jo 9t L ~ 

The time derivative of equation (47) reads 

dan(t) 2 fL 8Q- (x, t) nirx 
- j £ - = 1 J- ^ sin <T=) dx (49) 

After simple manipulation (addition of equation (49) to the 
multiplied equation (48)) to eliminate the term containing the 
integral, one can obtain an infinite set of ordinary differential 
equations 

da (t) nu 2 2nïï r 
dt + <-£"> an(l> = -j^ [Qu{i> ~ (-DnQ^(i)] (50) 

which is equivalent to the original differential equation (15). The 
initial conditions corresponding to the respective terms of the 
Fourier development of the initial condition are 

an(0) = -| /- q0(x) sin(mrx/L)dx (51) 

For convenience we can introduce an additional variable 

G(t) = Qu0t) - (-l)
nQ^(t) (52) 

which reflects the impact of both boundary conditions. 
The Laplace transform solution of equation (50) with the 
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c o n d i t i o n (51) i n t h e complex domain r e a d s 

a ( s ) = [2n7T/L g ( s ) + a ( 0 ) ] / ( s + n27T2 /L2) (53) 

where g ( s ) i s t h e L a p l a c e t r a n s f o r m of G(_t_) . 
I f z e r o i n i t i a l c o n d i t i o n s h o l d a long t h e whole r e a c h (q 0(x.) = 0 

t h a t i s a n ( 0 ) = 0 f o r a l l n ) , t h e L a p l a c e t r a n s f o r m s o l u t i o n i s 
s i m p l i f i e d t o t h e p r o d u c t form: 

2nTT/L 
a „ ( s ) = r—: . g ( s ) (54) 

s + n T T 2 / L 2 

The i n v e r s e L a p l a c e t r a n s f o r m y i e l d s t h e f o l l o w i n g c o n v o l u t i o n t y p e 
r e s p o n s e 

a ( t ) = 2 n ^ r e x p ( - n 2 7 T 2 t / L 2 ) * G ( t ) (55) 
n - j / -

The general solution given by equation (41) can now be written in 
terms of the upstream and downstream boundary conditions as 

Q'(x, t_) = h^(x, t) * Q^(t) + h^(x, t_) * Q£(t) (56) 

and by comparison of equations (44, 52, 55) the impulse response for 
an upstream disturbance can be written as 

h
u ( £ > 1> = 2TT/L2 Z°= n-sin(nTTx/L) exp ( -n 2 7r 2 j t /L 2 ) (57) 

and the impulse response for a disturbance at the downstream boundary 
as 

h d ( i > !> = - 2 l T / L 2 Z ° ° = l ( - l ) m n-sin(nTTx/L) e x p ( - n 2 T T 2 t / L 2 ) (58) 

Returning to the original dimensionless variable of equation (15) we 
get 

Q(x, t) = hu(x, t) * Qu(t) + hd(x, t) * ̂ ( t ) (59) 

where 

hu(x, t) = exp(x/2 - t/4) h^(x, t) (60) 

hd(*> 1> = exp[-(L - x)/2 - jt/4 ĥ J(x, t) (61) 

Equations (60) and (61) give the impulse responses for disturbances 
at the upstream and downstream boundary respectively. 

It remains to confirm that solution given by equations (57) and 
(58) satisfy boundary conditions as well as the differential 
equation. The eigenfunction expansion postulated by equation (41) 
relates to the corresponding homogeneous problem and hence applies 
to the open interval defined by 

0 < x < L (62) 
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and the validity of the solution at _x = 0 and .x = h must be 
separately verified. For the impulse response function given by 
equation (57) it is necessary to show that 

h" (x, t) -> ôOt) as x, •> 0 (63) 

and that 

h^U, t) •> 0 as x_ -> L, (64) 

The crucial test therefore is to verify that the integral of the 
impulse response function 

,-co 

I = j h"(x, t)dt (65) 
u J o u — — 

has the value of unity for x_ = 0 and zero for x = h. 
Since the impulse response function for an upstream disturbance 

is given by equation (57) the integral required is given by 
oo 

Iu = 2 I sin(mTx/L)/(mr) (66) 

so that the problem reduces to an evaluation of the sum of an 
infinite series. This can be readily obtained by taking the Fourier 
expansion of 

f (x) = x for 0 < x < 2L (67) 

by writing 

CO CO 

f(x) = aQ/2 + In=iancos(nlTx/L) + E =1bnsin(n1Tx/L) (68) 

The Fourier coefficients in equation (68) are easily determined since 

r2L 
aQ = 1/L J - x. dx = 2L (69a) 

a„ = 1/L f - x cos(nTTx/L)dx = 0 (69b) 
II ^Q 

b„ = 1/L j 2 ^ x sin(nTTx/L)dx = 2L/(mr) (69c) 

Substitution of the coefficients from equations (69) into 
equation (68) gives 

CO 

x = L - 2L E n = sin(nlTx/L)/(mT) (7°) 

so that the sum of the series in equation (66) and hence the value of 
the integral in equation (65) is given by 

! u = <i - x)/L (71) 

It follows at once that the integral has the value unity for x. = 0 
and the value zero for x_ = IJ. 

A similar line of reasoning based on the Fourier expansion of x 
in the interval 



-L < x < h 

leads to the result that 

*d = I0
 hd<*> i > d i 
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(72 ) 

(73 ) 

is given by the series 

CO „ 

Id = -2 £ (-l)n sin(mrx/L)/(mr) (74) 
n— l 

and that the sum of the series is given by 

xd = Z/k <75> 

which has the required values of zero at x: = 0 and unity at x = L. 

NUMBER OF TERMS REQUIRED FOR COMPUTATION 

The two alternative approaches, by means of the Laplace and the modal 
analysis techniques, to flood routing in a finite reach result in two 
equivalent pairs of expressions for the upstream and downstream 
transfer functions: equations (37) and (38) for the Laplace transform 
approach, and equations (60) and (61) for the modal analysis 
approach. It is instructive to ask the question: how many terms in 
the series are required in each case for practical calculations? 

For small values of t_ or large values of L_ the Laplace transform 
method is superior because then the factors exp[-(2nL + x) /4tJ are 
all small and only a few terms of the series in equation (37) and 
(38) are needed. For the limiting case of L̂  -> °°, i.e. a 
semi-infinite channel, all terms are zero except the first. The 
convergence for a finite reach is illustrated by evaluation of 
particular terms of series (33) for the case of x = 5 and h = 10 
given in Table 1. It can be seen from Table 1 that the series 
based on Laplace transform derivation is highly convergent for 
values t_ less than 10, is slowly convergent for t_ = 100, and is 
oscillatory for t_ = 1000. 

For the particular case of x = L/2 the convergence will be the 
same for the series reflecting the response to the downstream 
boundary condition since for this value equation (34) is identical 
to equation (33). The values given by equations (37) and (38) for 

Table 1 Evaluation of the first seven terms of series (33) for values of x = 5, L = 10 

n \ î 

0 
- 1 

1 
- 2 

2 
- 3 

3 

1 

0.272 x 10"2 

-0.158 x10"2 3 

(0) 
(0) 
(0) 
(0) 
(0) 

10 

0.239 x 10"1 

- 0 . 4 8 3 x 1 0 " ' 
0.365 x 10"7 

- 0 . 1 5 6 x 1 0 " " 
0.414 x10"2 2 

- 0 . 7 0 3 x 1 0 " " 
(0) 

100 

0.133 x10" 2 

-0.241 x 10"2 

0.148 x10"2 

-0.462 x 10"' 
0.804 x 10"4 

-0 .806 x 10~5 

0.474 x 10"6 

1000 

0.443 X10"4 

- 0 . 1 2 6 x 1 0 " ' 
0.191 x 10"' 

- 0 . 2 3 0 x 1 0 " ' 
0 .242x10" ' 

- 0 . 2 3 0 x 1 0 " ' 
0.202 x10~3 
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Table 2 Evaluation of the first 10 terms of series (57) for values of x = 5, L = 10 

• \ 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

1 

0.569 x10~' 
0.595 x10~8 

- 0 . 7 7 5 x 1 0 ^ 
-0.728 x 10~8 

0.266 x l O - 1 

0.303 x 10~8 

- 0 . 3 4 9 x 1 OT2 

-0.255 x10~9 

0.191 x 10"3 

0.122x10 10 

10 

0.234 X10-1 

0.171 x10~9 

-0.262 x lO" 4 

-0.489 x 10~14 

0.604x10^" 
0.393 x10~22 

-0.437 x 10"21 

-0.522 x lO^34 

0.108 x lO" 3 4 

(0) 

100 

0.325 x 
0.632 x 
(0) 
(0) 
(0) 
(0) 
(0) 
(0) 
(0) 
(0) 

10~5 

1 0 - 2 5 

1000 

(0) 
(0) 
(0) 
(0) 
(0) 
(0) 
(0) 
(0) 
(0) 
(0) 

the original dimensionless variables will not be equal but since 
_x = L/2 we have 

hd(L/2, _t) = exp(-L/2) hu(L/2, t) 

and the rate of convergence will remain the same in the two cases. 
For large time periods or short lengths of channel, the modal 

analysis solution is preferable due to the heavily damped nature of 
the exponential terms. The first few elements of the series are 
significantly greater than the others. This is illustrated in 
Table 2 for the same values of x. = 5 and L, = 10. It can be seen 
from Table 2 that the series based on modal analysis is highly 
convergent for values of t_ > 10. For a value of t_ = 1, the modal 
analysis series is only slowly convergent but the sum of the 10 
terms shown is equal to single term approximation of the Laplace 
transform series. 
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