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ABSTRACT 

Dooge, J.C.I., Strupczewski, W.G. and Napi6rkowski, J.J., 1982. Hydrodynamic deriva- 
tion of storage parameters of the Muskingum model. J. Hydrol., 54: 371--387. 

The St. V~nant equations for unsteady flow in open channels and the Muskingum 
method are written both in their conventional forms and in the state-space formulation. 
The hydrodynamic equation of motion is solved by the method of state trajectory varia- 
tion and the result for the first-order variation in the state-space variables is used as a basis 
of linking the parameters of the Muskingum model with the hydraulic parameters of the 
open channel reach. The results are applicable to any shape of cross-section and to any 
type of friction law. 

TYPES OF DESCRIPTION OF UNSTEADY FLOW IN OPEN CHANNELS 

T o  descr ibe  the  u n s t e a d y  m o t i o n  o f  wa t e r  in canals  and  rivers by  m e a n s  of  
t he  m e t h o d s  of  m a t h e m a t i c a l  physics ,  i t  is necessary  to  k n o w  wi th  suf f ic ien t  
a ccu racy  the  geomet r i ca l  and  hydrau l i c  charac ter i s t ics  o f  the  channe l  r each  
as well as the  initial and  b o u n d a r y  condi t ions .  The  di f f icul t ies  o f  m e e t i n g  
these  r e q u i r e m e n t s  and  the  desire to  f ind m e t h o d s  t h a t  w o u l d  be simple,  y e t  
su f f i c ien t ly  accura te ,  led to  the  d e v e l o p m e n t  in h y d r o l o g y  o f  l u m p e d  con-  
c ep tua l  m o d e l s  and  of  a p p r o a c h e s  based  on  b l a c k - b o x  analysis.  In  the  l a t t e r  
cases, the  p a r a m e t e r s  o f  the  m o d e l  or  the  o rd ina t e s  o f  the  sy s t em response  
are based  on ly  on i npu t  and  o u t p u t  data .  F o r  channe l s  fo r  which  i n p u t  and  
o u t p u t  da t a  are n o t  available,  these  m e t h o d s  can on ly  be  used  if the  pa r am-  
e ters  can  be  a p p r o x i m a t e d  in s o m e  way  on  the  basis o f  the  k n o w n  geomet r i -  
cal and  hydrau l i c  charac te r i s t ics  o f  the  channe l  reach.  

T h e  re la t ionsh ip  b e t w e e n  the  m o d e l  p a r a m e t e r s  fo r  the  c o m m o n  h y d r o -  
logical  m e t h o d s  o f  f lood  rou t ing  and  the  hydrau l i c  charac ter i s t ics  o f  the  
channe l  were  d e t e r m i n e d  fo r  the  special  case o f  a wide  r ec t angu la r  channe l  
wi th  Ch~zy f r ic t ion  by  m a t c h i n g  the  m o m e n t s  of  these  c o n c e p t u a l  m o d e l s  
to  the  m o m e n t s  of  l inearised St. V~nan t  equa t ions  (Dooge  and  Har ley ,  1967;  
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Dooge, 1973). In the present paper, the problem of  establishing relationships 
applicable to any shape of  cross-section and any friction law is tackled. In 
particular, a state trajectory variation method is applied to the complete  St. 
V~nant equations (Napi6rkowski, 1978) and the result for the first term of 
the Volterra series is taken as equivalent to the linear form of the Muskingum 
model  in order to determine the relationship between the hydraulic param- 
eters of the St. V~nant equation and the lumped parameters of the Musk- 
ingum model. 

ST. VI~NANT EQUATIONS FOR UNSTEADY OPEN CHANNEL FLOW 

The one-dimensional equation of  continui ty for unsteady flow in an open 
channel wi thout  lateral inflow is given by: 

~Q/~x + ~A/~t = 0 ( la)  

where Q(x,t) is the discharge and A(x,t) is the cross-sectional area of  flow. 
If the assumption is made that  only accelerations in the direction of  mot ion 
need be taken into account,  then the equation for the conservation of linear 
momen tum in this direction can be writ ten (St. V~nant, 1871) as: 

~z u ~u 1 ~u To 
~ - -~+g~xx+g~-~  + - = 0 (2a) 7R 

where z (x,t) is the water surface elevation with respect to a fixed horizontal 
datum, u(x,t) is the average velocity of  f low at the cross-section, r0 is the 
average shear stress along the wet ted perimeter of  the cross-section, 7 is the 
weight density of water, and R is the hydraulic radius of  the cross-section. 
Nowadays,  it is more usual to denote  the last term on the left-hand side of  
eq. 2a as Sf and describe it as the friction slope. In the case where the slope 
of  the channel bed is uniform, it is customary to use the depth of  flow rather 
than the water surface elevation and hence to write the equation of linear 
momen tum as: 

~y  + u ~u 1 ~u 
0x g ~x + g  0t - S 0 - - Z f  (2b) 

where y (x,t) is the depth of flow, and So is the bo t tom slope (a downward 
slope being taken conventionally as positive). 

The problem of f lood routing involves the prediction of  the hydrograph of  
flow Q(t), or level z(t) ,  or depth y( t ) ,  (or velocity, or area) at the down- 
stream end of a reach on the basis of  a given hydrograph of  flow or of level 
at the upstream end. The problem involves the solution of  the above set of  
equations subject to a given initial condit ion and to appropriate boundary  
conditions. Since the system of equations is a hyperbolic one, two boundary 
condit ions are required and for the case of  tranquil f low (i.e. the Froude 
number  less than 1) one of  these boundary  condit ions must  be prescribed at 
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each end of the reach. No analytical solution is available and the problem 
must  be solved either by simplification of  the equations or by some method  
of numerical approximation. 

In using numerical methods,  the solution is marched forward from one 
time level to another, using either an explicit or an implicit computa t ion  
scheme. Thus, before proceeding to make a finite-difference or other approx- 
imations the equations are expressed in prognostic form, i.e. the t ime deriva- 
tives are expressed as a function of  the space derivatives and of the non- 
derivative terms. Thus the equation of continuity can be written in prognos- 
tic form as: 

~ A / ~ t  = - ~ Q / ~ x  ( l b )  

which is merely a rearrangement of  eq. l a  above. Similarly, the dynamic 
equation can be writ ten in a prognostic form as: 

5u 3y 3u 
~t  - g ~-x --  u ~x  + g ( S o  - -  S t )  (2c) 

by simple rearrangement of  eq. 2b. 
The second prognostic equation can be writ ten in terms of  the same de- 

pendent  variables as the first (Q and A) by substituting for the velocity u ( x , t )  

in eq. 2c and grouping terms to obtain: 

_ 3 A  2 Q  ~ Q  + g A  (So - -  S ~ )  (2d) 
~t 3Q g Y ( 1 - - F 2 )  3x A ~x 

where 2 is the mean depth of f low defined by:  

= A / T  (3a) 

and T is the width of the channel at the water surface, i.e.: 

T = d A / d y  (35) 

F is the Froude number,  defined by: 

F 2 = Q 2 T / g A  3 (4) 

Eqs. l b  and 2d provide a state transition representation for one-dimen- 
sional unsteady flow in an open channel. The state of  the system at any time 
is conveniently represented by the values of  the area of  f low (A) and the 
discharge (Q) at all points along the channel at that  instant. If the total 
channel reach is divided into n segments for calculation purposes, then the 
state space has a dimension of  (2n + 2), and input to the system at any in- 
stant is given by the terminal conditions of  which there will be one at the 
upstream and one at the downstream end for the case of  tranquil flow. From 
the point  of  view of the f lood routing problem, the ou tpu t  of  interest is the 
value of  Q or A downstream in the reach. 
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H Y D R O L O G I C  M E T H O D S O F F L O O D  R O U T I N G  

The complete dynamic equation given by eq. 2 above represents a distrib- 
uted model in which the dependent variables are continuous functions of 
distance along the channel. In many practical problems, data are only avail- 
able at certain selected points and use is made of black-box analysis or of 
lumped conceptual models that can be calibrated on the basis of the up- 
stream inflow and the downstream outflow for a reach of river of apprecia- 
ble length. 

In such an approach, the continuous equation of continuity given by eq. 1 
is replaced by a lumped continuity equation. This can be derived readily by 
integrating eq. lb  along the reach: 

2 2 

f ( 3A /3 t )dx  = -- f (OQ/3x)dx 
1 1 

(5a) 

which can be written as: 

2 

d f A ( x , t ) d x  = --[Q(x,t)]2 
1 dt  1 

(5b) 

which is clearly equivalent to: 

dS /d t  = Q l ( t ) - -  Q2(t) (5c) 

where S(t)  is the storage in the reach, Q1 (t) is the inflow at the upstream 
end of the reach, and Q2 (t) is the outflow at the downstream end of the 
reach. Eq. 5c is often referred to as the hydrologic storage equation. 

The lumping of the dynamic equation given by eq. 2 is not so readily ac- 
complished. In the classical hydrologic approach to flood routing the dy- 
namic equation is abandoned and replaced by a postulated relationship: 

S(t)  = f [Ql  (t),Q2(t)] (6) 

between the three variables in eq. 5c. It should be realised that the operator 
given on the right-hand side of eq. 6 may be differential in nature as well as 
algebraic. A relationship of the type given by eq. 6 is sufficient for the solu- 
tion of the flood routing problem in which we seek to predict the outflow 
Q2 (t) for a given reach when given the inflow Q1 (t). 

In such a lumped formulation of the routing problem, the state-space vec- 
tor is reduced to a single variable S(t)  given by the storage in the reach at any 
particular instant. Eq. 6, when rearranged to give the outflow Q2(t) as a 
function of the state S(t)  and the input Q1 (t), gives us the output-state equa- 
tion in standard form and the insertion of this expression for the output 
Q2 (t) in eq. 5c gives us the state transition equation in standard form. The 
differential equation governing the system can be obtained by substituting 
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the expression for the state S( t )  given by eq. 6 into eq 5c, thus obtaining on 
rearrangement: 

~f dQ2 ~f dQ1 
Q 2 ( t ) + - - - -  - Ql ( t )  (7) 

~Q2 dt ~Q1 dt 

where f is the funct ion defined by eq. 6. 
Most of the hydrologic methods  of  f lood routing (at least in their original 

form) are linear and hence correspond to a linear operator  in eq. 6. The sim- 
plest linear relationship between storage (S) and out f low (Q2) is given by: 

S ( t )  = K Q  2(t)  (8) 

which represents the basic conceptual  model  of  a linear reservoir with stor- 
age delay time K. Such a simple model  is found to be inadequate to represent 
the movement  of f lood waves in rivers and the next  step is to consider 
replacing this one-parameter relationship by a two-parameter  relationship 
(Sugawara and Maruyama, 1956). If the simple relationship of  eq. 8 is gen- 
eralised by adding a second term involving the t ime derivative of  the out f low 
(Q2), then a conceptual  model  is obtained consisting of  two linear reservoirs 
in series. If, however,  the generalisation of  two parameters is made by assum- 
ing that the storage (S) is linear function of  the inflow (Q1) as well as of  
the outf low (Q2), then we obtain the basis relationship of  the Muskingum 
model:  

S = K [ x Q l ( t )  + ( 1 - x ) Q 2 ( t ) ]  (9) 

which was first proposed by McCarthy (1939). When inflow and out f low 
data are available, they can be used to determine the values of  the param- 
eters K and x, and the Muskingum model  using these parameters can then be 
applied to the prediction of  out f low due to any given inflow. 

The Muskingum method  can readily be writ ten in standard state-space 
form. Rearrangement of eq. 9 gives us the out f low (Q2) in terms of the state 
(S) and the input  (Q1)as  follows: 

1 x 
Q2(t) - S(t )  - -  Q l ( t )  (10) 

K(1  -- x) 1 -- x 

which is the standard form for the output-state  equation for a linear time- 
invariant system. It  will be noted that  the input  occurs in this output-state  
equat ion thus indicating a bypassing of  the system, furthermore,  that  the 
coefficient of  the input is negative thus indicating (for values of  x between 
zero and one) the possibility of negative outputs  under certain conditions. 
The subst i tut ion for Q2 (t) in eq. 5c of  the expression given on the right-hand 
side of  eq. 10 gives us: 

dS  1 1 
d t  - g ( 1  -- x )  S ( t )  + ~ Q1 (t) (11) 
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which is in the standard form of the state transition equation for a linear 
system. 

In the original formulation of  the Muskingum method (McCarthy, 1939) 
and in its early use (Linsley et al., 1948), a physical justification for the basic 
Muskingum relationship given by eq. 9 was based on the distinction between 
prism storage and wedge storage in the channel reach. The only reliable way 
to provide a physical basis for the Muskingum method (and to relate the 
parameters K and x of the method to the hydraulic parameters in the chan- 
nel) is to relate eq. 9 to the dynamic equation given in eq. 2. In the re- 
mainder of the present paper an a t tempt  is made to relate the Muskingum 
relationship of eq. 9 to a linearised solution of eq. 2 in order to provide the 
basis for such a comparison. This linearised solution is obtained by consider- 
ing only the first-order variations in the state-space variables. 

RELATIONSHIP  BETWEEN FIRST-ORDER VARIATIONS 

The complete  non-linear St. V~nant equations can be solved by consider- 
ing the variations from a steady state-space trajectory (Findeisen et al., 1977; 
Napi6rkowski,  1978). If we consider only the first"order variations then we 
obtain a linear approximation to the solution of the problem. Such a linear 
approximation can be compared to the Muskingum model  in its linear form 
in order to obtain an estimate of  the parameters of the Muskingum model  
based on the hydraulic characteristics of  the channel. 

If we take each variable as consisting of  the value for steady uniform flow 
and the first.order variation from this steady state then we have for the two 
dependent  variables of  eqs. I and 2d: 

Q(x,t) = Qo + 5Q(x,t) and A(x,t)  = A o + ~A(x,t) (12a, b) 

Substituting from eqs. 12a and 12b into the continui ty equation (1) gives 
us the following relationship between the first-order variation in discharge 
and the first-order variation in area: 

0 ( S Q ) +  0 ~ ~ (SA) = 0 (13) 

which is identical in form to the original cont inui ty  equation given by eq. 1. 
The dynamic equation of mot ion for  the original variables can be writ ten 

in terms of the discharge (Q) and the area f low (A) as: 

~Q~- ÷ g:~(1 - - F  2 ) _~x_tA~A 2Q aQ~x = gA(So --Sf)  (14) 

where ~ is defined by eq. 3a and F by eq. 4. In this discussion the friction 
slope St is taken in the completely general form and may be writ ten as: 

Sf = f[A,Q,(shape),(roughness)] (15) 
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For  the reference conditions of steady uniform flow, every term on the 1.h.s. 
of  eq. 14 is identically equal to zero because of the assumption of steadiness 
and uniformity.  The r.h.s, of  the equation is equal to zero because for steady 
uniform flow we have: 

S~ = So (16) 

In a linear approximation to eq. 14 the dependent  variables Q and A will be 
replaced by their approximations given in eqs. 12a and 12b. The coefficients 
of  the derivative terms of  the 1.h.s. of eq. 14 will be replaced by their refer- 
ence values plus the linear variation from it and the latter linear variation will 
be functions of  the linear variations in discharge and in area defined in eq. 
12. However,  because the reference condition is assumed to be uniform, the 
terms are all zero under the reference conditions and consequent ly any varia- 
tions in the coefficients will not  enter into the first-order approximation. On 
the r.h.s., however,  where the terms are not  separately equal to zero for the 
reference condition, the first-order variations will have to be taken into 
account.  Since the friction slope St is a function of discharge (Q) and of  
area (A) then a first-order approximation to the friction slope may be ob- 
tained by writing a Taylor 's  series expansion as follows: 

Sf = So + (~S~/~A)SA + (~Sf /~Q)SQ (17) 

where the derivatives of the friction slope with respect to the discharge and 
the area are evaluated at the reference condition. When the appropriate sub- 
stitutions are made from eqs. 12 and 17 we obtain a second relationship 
between the first-order variations in discharge and in area as follows: 

2Q 0 
(SO) + g~0(1 - - F ~ )  ~x(SA) + (SQ) 

~t A0 ~x 

( ~Sf ~Sf ) 
= gAo -- - ~  5Q - - ~  5A (18) 

which is the required linearised form of eq. 14. 
The task remaining is to use the linearised equat ion of  mot ion given by eq. 

17 as the basis for the scale parameter K and the shape parameter x in the 
basic linear relationship of the Muskingum model  defined by eq. 9. Eq. 17 
differs in form in two respects from eq. 9. Firstly, eq. 17 contains deriva- 
tives with respect to both  space and time (i.e. is prognostic in character) 
whereas eq. 19 refers only to the relationship between variables at a given 
time level and is therefore diagnostic in character. The second difference is 
that  eq. 17 represents a distributed model  and its solution would be a func- 
t ion of distance along the channel. On the other  hand, eq. 9 represents a 
lumped model  in so far as the total  storage in the channel reach is expressed 
as a funct ion only of  the f low at each end of  the reach. Accordingly, in order 
to make a direct comparison it is necessary to transform eq. 17 from diag- 
nostic to  prognostic form and to transform it from a distributed to a lumped 
formulation. 
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In order to reduce eq. 18 to diagnostic form, it is necessary either to ne- 
glect completely the term involving the derivative with respect to time of the 
variation discharge or else to express it in terms of derivatives with respect to 
distance. The latter course would be preferable if a reasonable basis for such 
expression can be derived. One convenient method of doing this is to use the 
kinetic-wave approximation as the basis for the elimination of the time de- 
rivative. In this approximation the assumption is made (which is reasonable 
under most practical conditions) that  the two terms on the r.h.s, of eq. 14 
are substantially larger than the terms on the 1.h.s. and accordingly that  the 
latter terms may be neglected as a first approximation. If this approach is 
applied to the linearised version in eq. 18 then we set the 1.h.s. of that  equa- 
tion equal to zero and obtain as a first approximation: 

~Sf/aA 6A (19) 

The above expression can now be used to approximate the first term on the 
1.h.s. of eq. 18 as: 

~t (SQ) - (~A) (20a) 
~S~/~A 
~Sf/~Q ~t 

which by combination with the equation of cont inui ty  given by eq. 13 can 
be written as: 

~S~ / ~A 
~t (6Q) - ~Zf/~Q ~x (6Q) (20b) 

Substituting from eq. 20b into eq. 18 and gathering terms we obtain: 

('2Q o ~Sf/3A 1 ~ 
gy°(1- - f2) -~x(6d)+ , - ~ o  + ~ S ~ / ~ x x  (SQ) 

( os, ) 
= gAo - - - ~ 6 Q - - - ~ 6 A  (21) 

which is completely diagnostic in form, i.e. it relates only to the relationship 
between the variables at a given time level. 

The relationship between the first-order variation in discharge and in area 
given by eq. 21 can be reduced to a lumped form capable of comparison 
with the Muskingum relationship of eq. 9 by writing the equation in terms of 
the values of these variables at the two ends of the reach. If our only knowl- 
edge of the area of flow is at  the upstream and downstream ends then we 
are forced to approximate the space derivative of the variation in area which 
occurs in the first term on the 1.h.s. of eq. 21 as: 

---~ (SA) = 6A2 -- 6A1 (22) 
Ox L 
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where A1 is the area flow at the upstream end of the reach, A2 is the area at 
the downstream end of the reach, and L is the length of the reach. Similarly 
the space derivative of the first, order variation in flow must  be written as: 

~Q2 - 5 Q 1  
~-~ (6Q) - L (23) 

It is clear tha t  the assumptions made in eqs. 22 and 23 are only reasonable in 
cases of unsteady flow where the wavelength of the flood wave is large com- 
pared to the length of the channel reach. For the accurate simulation of 
flows of shorter wavelengths, a model based on multiple reach lengths would 
have to be used. 

We are now in a position to evaluate eq. 21 at each end of the reach. When 
writing the equation for the upstream end of the reach at which the area of 
flow is A1 and the discharge is Q1, the terms on the 1.h.s. o feq .  21 are eval- 
uated by means of eqs. 22 and 23 while the terms on the r.h.s, of eq. 21 are 
evaluated at the upstream section so that  we can write eq. 21 as: 

= gAo -- - ~  ~Q1 - - - ~  ~A1 (24a) 

By collecting the terms involving the areas on one side of the equation and 
the terms involving the discharges on the other side of the equation we can 
write: 

 s,1 6Aa 

3Sf 2Q0 ~Sf/~A 1] 5Q 1 
= gAo - ~  Ao L ~Sf/bQ L 

[ 2Qo + ~Sf/~A 1 } 5Q 2 + 
[~oL 3Sf/OQ L 

which for convenience can be written as: 

( M - - N ) S A  1 --M6A2 = (P--R)6Q1 + RSQ2 

where the values of M, N, P and R are respectively given by: 

(24b) 

(24c) 

2Q0 1 DSf/5A 
P = gAo(3Sf/3Q) and R = Ao L + L 3S~/SQ (25c, d) 

Eq. 24 gives us a relationship between the first-order variations in discharge 
and area at the two ends of the reach based on the application of eq. 21 to 
conditions at  the upstream end of the reach. 

M = g Y o  (1--F02),  N = gAo(3S~/3A ) (25a, b) 
L 
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A similar equat ion can be derived for the downstream end of  the reach. 
When eq. 21 is written for the downstream end of the reach, the derivative 
terms on the l.h.s, of  the equation are again approximated by eqs. 22 and 23 
and the variations on the r.h.s, of  eq. 21 are writ ten for condit ions at the 
downstream section where the variation in discharge is Q2 and the variation 
in area is A 2. Accordingly, we have for the downstream end of the reach: 

= gAo -~  8Q2 OA 

in which the terms can again be gathered to give: 

L + ~--~] 8A2 

--[~oL +LOS~/OQj SQ1 + gAo - ~  + ~oL +L O S ~ j  SQ2 (26b) 

which in turn can be writ ten as: 

MSA1 --(M + N)SA2 = --RSQI + (P + R)SQ2 (26c) 

in which the parameters M, N, P and R have the same meaning as in the res- 
pective eqs. 25a--25d and have the same values as in eq. 24c since they are 
all evaluated at the reference conditions. 

We have now obtained two equations involving the first#order variation in 
the flow and in the area at the two ends of a channel reach. For the up- 
stream end we have: 

(M--N)SA~ --MSA 2 = (P--R)SQI + RSQ2 (24c) 

while for  the downstream end of the reach we have: 

MSAI --(M + N)SA 2 = --RSQ 1 + (P + R)SQ2 (26c) 

These two linear equations can readily be solved in order to express the 
variation in area at either end of the reach in terms of  the discharge at each 
end of the reach. Thus eliminating the variation in area at the downstream 
end of  the reach 8A2 we obtain: 

NaSA~ = -- [ ( M ) ( R ) + ( M + N ) ( P - - R ) ] S Q 1  

+ [(M)(P + R) -- (M + N)(R)]  8Q 2 (27) 

By substituting for M, N, P and R from the respective eqs. 25a--25d we 
obtain an explicit  expression for the first#order variation in the area of  flow 
at  the upstream end of the channel in terms of  the first-order variation of  
flow at the upstream end of the channel (8Q1), the first-order variation of  
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flow at the downstream end of the channel (6Q2) and the hydraulic param- 
eters of the channel at the reference discharge. Similarly, we can obtain an 
explicit expression for the first, order variation in the area of flow at the 
downstream end of the channel by eliminating the linear variation of flow at 
the upstream end of the channel (SA 1 ) from eqs. 24c and 26c above. When 
this is done we obtain: 

N 2 8 A 2  = -- [ (M--N) (R)  + ( M ) ( P - - R ) ] S Q  1 

+ [(M - - N ) ( P  + R )  - -  (M)(R)] 5Q2 (28) 

Eqs. 27 and 28 are expressions for the first-order variation of the area of flow 
at the upstream and downstream end of the reach, respectively, as linear 
functions of the variation in discharge at the upstream and downstream end 
of the reach. These relationships can be used as the basis for comparison 
with the basic Muskingum relationship of eq. 9. 

ESTIMATION OF MUSKINGUM PARAMETERS 

The basic assumption of the Muskingum method is usually written as: 

S( t )  = g [ x Q l ( t  ) + ( 1 - x ) Q 2 ( t ) ]  (9) 

where K and x are parameters to be determined in some way. If the param- 
eters are determined on the basis of eqs. 27 and 28, derived in the last sec- 
tion, then these values will apply in the neighbourhood of the reference 
condit ion about  which the variation in eqs. 27 and 28 are taken. For the use 
of the Muskingum method as a linear model then the same values of the 
parameters would be used throughout  the whole range of flow. In the case 
of the use of the Muskingum method as a non-linear model in which the pa- 
rameters K and x would vary with discharge then the values can still be esti- 
mated on the basis of eqs. 27 and 28 for any number of reference discharges 
and the variation of the parameters with reference discharge determined. 

For the Muskingum model the variation of storage in the reach is given 
b y :  

6S = K [ x S Q  1 + ( 1 - - x ) 6 Q 2 ]  (29) 

If the length of the reach is small compared to the wavelength of the un- 
steady flow (as was assumed in the last section in eqs. 22 and 23), then the 
storage in the reach can be approximated by: 

68 = ~ L ( 6 A I  + 6A2)  (30) 

at any instant of time. The relationship between the first-order variation in 
storage and the first-order variations in area at each end of the reach given 
by eq. 30 can be transformed to a relationship between the variation in stor- 
age and the variation in discharge at the ends of  the reach by substituting 
from eqs. 28 and 28 into eq. 30. When this is done we obtain: 
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2 N  2 
T 6S --- [ - - ( 2 M + N ) P + 2 N R ] 6 Q I + [ ( 2 M - - N ) P - - 2 N R ] 6 Q  2 (31) 

which is the rleationship between the first, order variation in storage in the 
reach and the first-order variation in discharge at the two ends of the reach, 
based entirely on the linearisation and the lumping of the hydrodynamic 
equation of motion.  

Comparison of the coefficients of corresponding terms in eqs. 29 and 31 
allows us to write: 

L 
Kx - 2N 2 [-- (2M + N)P + 2NR] (32) 

for the coefficient of the first-order variation of  the discharge at the up- 
stream end of  the reach and to write: 

L 
g (1  -- x) - 2N 2 [(2M - -N)P -- 2NR] (33) 

for the coefficient of the variation in discharge at the downstream end of the 
reach. By adding eqs. 32 and 33 we get the hydrodynamic  estimate of the 
scale parameter K as: 

L 
K - 2N 2 (-- 2NP) (34a) 

which reduces to: 

P 
g - L (345) 

N 

Substi tution from eqs. 25b and 25c gives us the scale parameter K of the 
Muskingum model in terms of the hydraulic parameters as: 

g = - - - ~ I - ~ x / L  (34c) 

so that  this parameter depends only on the length of channel and on the 
particular form of the general friction law appropriate to the flow being 
considered. Since the derivatives of the friction slope (S~) with respect to 
discharge (Q) and area of flow (A) are evaluated for the steady uniform ref- 
erence conditions the total derivative in the friction slope must be zero so 
that  we can write: 

OSfl ~Sf dQ _ 

/ a-Q - dA Ck (35)  

where Ck is the kinematic wave speed (Lighthill and Whitham, 1955). Com- 
bining eqs. 34c and 35 we have: 

K = LiCk (36) 
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Accordingly, the scale parameter (K) of the Muskingum model is seen as the 
time taken to traverse the channel at the kinematic wave speed. Since long 
waves (for which the model is adequate) travel at approximately the kine- 
matic wave speed, the Muskingum scale parameter (K) is identified with the 
time of travel of long waves through the channel reach under consideration. 

The second parameter x of the Muskingum relationship can be determined 
from eqs. 32 and 34. Dividing the former equation by the latter we obtain: 

1 
x = 2NP [(2M + N ) P - -  2NR] (37a) 

which can be written as: 

x = ½ + M / N - - R / P  (37b) 

Substitution from eqs. 25a and 25b gives us: 

M _ 1 Y0 (1--F~0) (38) 
N bSf/~A Ao L 

Similarly, substitution from eqs. 25c and 25d gives us: 

R 1 2Q0 OSf/~A 1 (39a) 
-~ = ~Sf /~QgA2L + (~S~/~Q)2 gAoL 

In order to simplify the expression for the shape parameter (x) it is conve- 
nient to write: 

~Sf/~A A o 
m = (40) 

~S~/~Q Qo 

in which the parameter m is the ratio of the kinematic wave speed given by 
eq. 35 to the average velocity of flow at the reference conditions. Using eq. 
40, we can write eq. 39a as: 

R 1 2Q~ 1 rn 2 Q~ (395) 
P - 3Sf/3-----A m g--~og + 3Sf/3------A gA3o-----£ 

o r  

R 1 Q2o 
P 3Sf/3A gA3o L (2m -- m 2 ) (39c) 

using the definition of the Froude number (F) in eq. 4 this can be written as: 

R _ 1 Y0 F 2 0 ( 2 m _ m  2) (39d) 
P OS~/3A A o L  

Substituting from eq. 38 and 39d in eq. 37b we obtain the expression: 

1 ~o • [ l _ ( m _  1)2F~] (37c) 
x = 1 + ~Sf/OAA-~L 



384 

which gives us the estimation of the Muskingum shape parameter x on the 
basis of the hydraulic parameters of the channel at the reference conditions. 
It should be noted that  the friction slope varies inversely with the area of 
flow so that  the value of the parameter x will be less than 0.5 even for a 
Froude number of 1.0 as long as the value of the parameter m defined by 
eq. 40 is less than 2.0. 

APPLICATION TO SPECIAL FRICTION LAWS AND CHANNEL SHAPES 

The significance of eqs. 36 and 40 can readily be seen if we apply the 
results to the friction laws in general use and to some particular shapes of 
channel. Bakhmeteff  (1932) suggested that  for most of the shapes com- 
monly encountered in open channel flow, the friction slope for rough turbu- 
lent flow could be taken as: 

Sf = (constant) × (Q2/y2n) (41) 

For this particular relationship we would have: 

~Sf/~Q = 2So/Qo (42) 

for the variation of the friction slope with discharge at the reference condi- 
tions; and: 

~Sf 2n So 
- ( 4 3 )  

~A To Yo 

where To is the surface width as defined by eq. 3d for the reference condi- 
tions, as the expression for the variation of friction slope with area at the 
same reference condition. If the expressions from eqs. 42 and 43 are substi- 
tuted in eq. 35 we obtain for the kinematic wave speed: 

c~ ---- n Q0 - n Y__0Q__00 (44) 
ToYo Yo Ao 

where Y0 is the mean depth of flow defined by eq. 3a, and Y0 is the full 
depth of flow used in eq. 41. For any given shape of section, the value of 
these parameters can readily be determined and the value of the kinematic 
wave speed given by eq. 44 used in eq. 36 to determine the scale parameter 
(K) of  the Muskingum model. For the same case the value of the parameter 
rn defined by eq. 40 will be given by: 

m = n (90/Y) (45) 

and substitution from eqs. 43 and 45 in eq. 40 gives us: 

1 1 i) (46) 
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which is the general expression for the shape parameter x for friction re- 
lationship of the type given by eq. 41. 

For the case of a rectangular channel the mean depth (90) is equal to the 
actual depth (Y0). Accordingly, we will have for the scale parameter: 

K = L / m u  o (47) 

where u0 is the average velocity at the reference conditions and n is the pa- 
rameter in eq. 41 which will depend on the friction law. For the case of 
Ch~zy friction we will have: 

m = ~ (48) 

so that  for a rectangular channel with Ch~zy friction the scale parameter in 
the Muskingum model will be given by: 

K -- ~ ( L / u o )  (49) 

For this case (rectangular channel with Ch6zy friction) the shape parameter 
of eq. 46 can be given by: 

x = ½ - - ~ ( Y o / S o L ) ( 1  - 1  2 ~F0)  (50) 

The values of K and x in eq. 49 and 50 are identical to those obtained for 
this special case of a rectangular channel with Ch~zy friction by comparing 
the first and second moments  of the impulse response of the Muskingum 
model with the first and second moments  of the linearised channel response, 
i.e. the impulse response of the linearised version of the complete St. V~nant 
equation (Dooge, 1973). 

The effect of using a different friction law can readily be illustrated for 
the case of Manning friction in a rectangular channel. If the Manning equa- 
tion is used then we have: 

m = ~ (51) 

Thus for a rectangular channel with Manning friction, eq. 47 becomes: 

K = ~ , ( L / u o )  (52) 

which may be compared to eq. 49 for the case of a rectangular channel with 
Ch~zy friction. The parameter x will also be varied. Insertion with the appro- 
priate value from eq. 51 into eq. 46 gives us for the case of rectangular chan- 
nel with Manning friction: 

X = ½ - - l t 6 ( Y o / S o L ) ( 1  - 4  2 ~F0) (53) 

which can be compared with eq. 50 for the case of a rectangular channel 
with Ch~zy friction. 

For shapes of channel other than wide rectangular, the parameters will 
take on different values. This may be illustrated for the case of a 90 ° trian- 
gular flume which is quite different in shape from the wide rectangular chan- 
nel. For such a triangular flume with Ch~zy friction, the value of the pa- 
rameter n in eq. 41 is given by: 
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and of  parameter m in eq. 45 is: 

Eq. 36 for the scaling parameter K takes the form: 

g -: ~ ( L / U o )  

and the shape parameter x is given by: 

x = ½- -1s (1 - - ]~F~)  

For the same 90 ° flume with Manning friction we have: 

n = ~ and  rn = ½ n = ~ 

so that  the scale parameter is given by: 

g = ~ ( L / u o )  

and the shape parameter x by: 

(54) 

(55) 

(56) 

(57) 

(58),(59) 

(60) 

x = ½ -- ~ (1- -~F20) (y0 /S0  L )  (61) 

Most of the shapes and friction laws encountered in practice (except for 
laminar flow) would be expected to be intermediate between a triangle sec- 
tion with Ch~zy friction whose parameters are given by eqs. 56 and 57 and 
a wide rectangular channel with Manning friction whose parameters are given 
by eqs. 52 and 53. 

It is clear from eq. 46 that  as the dimensionless length of the channel 
( S o L ) / y o  becomes greater and greater the value of the shape parameter will 
approach the value x = 0.5 asymptotically. It will never exceed that  figure 
for turbulent  flow at Froude numbers less than one except in the excep- 
tional case where the discharge at uniform flow increases less rapidly than 
the area of flow. While the latter conditions would hold for free surface flow 
in a circular pipe which was almost full, which is basically unstable, it would 
not  occur in the shapes normally encountered in open channel flow compu- 
tations. For laminar flow we would have m = 3.0 and thus the expression 
within brackets in eq. 40 could be negative for Froude numbers approaching 
unity.  This would result in a value of x greater than 0.5, which would indi- 
cate amplification at all frequencies. 

For very small lengths of channel the value of  the parameter x as given by 
eq. 40 could be negative. While such a negative value is difficult to reconcile 
with the concept of prism storage originally spoken of in connection with 
the Muskingum method,  it is the appropriate value of the parameter for the 
best fit to the linearised equation. 
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