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SUMMARY
The two-point boundary problem for the full hyperbolic St Venant equation, in

which both upstream and downstream boundary conditions are taken into account,
is discussed. The upstream and downstream transfer functions for the linearized
equation are derived analytically for a channel reach of finite length. The effect of
the secondary boundary condition is to produce a series solution for each of these
transfer functions.

1. Linearized St Venant equations
WHEN only one space dimension is taken into account, the equation of
continuity for the unsteady flow in an open channel in the absence of lateral
inflow is given by

where Q{x, t) is the discharge, A{x, t) is the cross-sectional area, x is the
distance from the upstream boundary and t is the elapsed time.

The equation for the conservation of linear momentum, in open-channel
flow, first formulated by St Venant in 1871 (1) is usually written in the form
(see (2, 3))

dx g dx g dt

where y{x, t) is the depth of flow, v{x, t) is the average velocity of the
cross-section, SQ is the bottom slope and Sf{v, y) is the friction slope defined
by the equilibrium condition for steady uniform flow,

r0 = YRSf, (3)

in which TO{X, t) is the average shear stress along the perimeter of the cross-
section, y »s the weight density of the water, and R{x, t) is the hydraulic
radius (the ratio of area to wetted perimeter) of the cross-section.
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Since the continuity equation given by (1) is linear in Q(x, t) and A(x, i),
it seems appropriate to adopt discharge and area as the dependent variables
and to express the nonlinear momentum equation in terms of the same
variables. This may be done through the use of the diagnostic equation

Q = vA, (4)

which by definition connects the discharge Q(x, t), the mean velocity v{x, t)
and the area of flow A(x, t). When (4) is used to eliminate velocity from
(2) we obtain

o-""£H?£+f-^-*>.
where y is the hydraulic mean depth, defined by

y{x,t) = A(x,t)IT{x,t); (6a)

T(x, t) represents the width of the channel at the water surface and is
defined by

T(x,t) = dA/dy, (6b)

and F(x, t) is the Froude number defined by

(7)
which is an important parameter of the flow conditions.

The friction slope depends on the type of friction law assumed, the shape
and roughness of the cross-section, the flow of the section and the area of
flow. It can be written in very general form as

Sf =f(A, Q, shape, roughness). (8a)

For any given shape and roughness of the cross-section and any given
friction law—whether laminar, smooth turbulent or rough turbulent (Chezy,
Manning or logarithmic)—the friction slope can be expressed as a function
of the flow Q and the area of flow A. Thus for Chezy friction we have in
general that

Sf = Q2/C2A2R(A), (8b)

where C is the Chezy friction parameter, and for the Manning formula in
metric units

Sf = n2[Q2/A2Ri(A)], (8c)

where n is the Manning friction parameter.
The most convenient way of linearizing the highly nonlinear momentum

equation (5) is to express the dependent variables in the forms

Q(x, t) = Q0+ Q\x, i) + eQ(x, t), (9a)

A(x, t) = Ao + A'(x, t) + eA{x, t), (9b)
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where Qo is a reference condition of steady uniform flow, Ao is the
cross-sectional area corresponding to this reference flow, Q'{x, t) and
A'[x, t) are the first-order increments and eQ(x, t) and eA{x, t) represent the
higher-order terms (that is, the error of the linear approximation).

When equations (9) are substituted in (1) and the higher-order terms
neglected we obtain, as the continuity equation for the perturbations Q'
and A',

which is identical in form to (1). When the nonlinear terms in (5) are
expanded in Taylor series around the uniform steady state (Qo, Ao) for the
increments defined by (9) and the terms of higher order than the linear ones
are neglected, we obtain the linearized momentum equation in the form

where the derivatives of the friction slope Sf(Q, A) with respect to discharge
(Q) and area (A) on the right-hand side of the equation are evaluated at the
reference conditions.

The variation of the friction slope with discharge at the reference con-
dition for all frictional formulae for rough turbulent flow could be taken as

dSfldQ = 2S0IQ0. (12)

We may for convenience define a parameter m as the ratio of the kinematic
wave speed to the average velocity of flow

m = cJ(Qo/Ao), (13)

where ck is the kinematic wave speed as given by Lighthill and Whitham (4)

ck = -{dSfldA)l(dSfldQ) = dQIdA. (14)

The parameter m is a function of the shape of channel and of area of flow
(A). For a wide rectangular channel with Chezy friction m is always equal to
3/2 and with Manning friction always equal to 5/3. For shapes of channel
other than wide rectangles, m will take on different values. Using these
values, the right-hand side of (11) can be written as

(15)

Since (10) and (11) are linear first-order equations in two variables, they
are equivalent to a single second-order equation in one variable. The most
general form of this second-order equation is obtained by using the
unsteady flow potential introduced by Deymie (5) and developed by Supino
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(6). This potential can be denned as the function U'(x, t) whose partial
derivative with respect to distance gives minus the perturbation in the area
of flow, that is,

dU'fdx = -A'(x,t), (16)

and whose partial derivative with respect to time gives the perturbation
from the reference discharge,

dU'ldt = Q'{x,t). (17)

Consequently, the perturbation potential U'(x, t) automatically satisfies the
continuity equation (10). When (16) and (17) are substituted in (11), we
obtain the dynamic equation for the unsteady flow potential U'(x, t) in the
form

2

Any linear function of the perturbation potential U'(x, t) will also represent
a solution of (18). Since differentiation is a linear operation, both A'(x, 0
and Q'(x, t) will also be governed by equations of the same form as (18).
The choice of dependent variable in any given problem will be governed
largely by the form in which the boundary conditions are given.

2. Boundary conditions for linearized St Venant equations
The equation to be solved is hyperbolic in form. Accordingly there are

two real characteristics defined by

dx/dt = v0±(gyo)l, (19)

along which the discontinuities in the derivatives of the solution will
propagate. For a Froude number less than one (tranquil flow) the secondary
characteristic direction involving the negative root will be in an upstream
direction and the flow within the range of influence of the condition at the
downstream boundary will be affected by that boundary condition.

For tranquil flow in a given length of channel there will be four solution
zones as shown in Fig. 1. In zone A the solution depends only on the double
initial condition along t = 0. In zone B the solution depends on the upstream
boundary condition along x = 0 and the condition established along the
leading primary characteristic by the solution in zone A. In zone C the
solution depends on the downstream boundary condition along x = L and
the conditions established along the leading secondary characteristic by the
solution in zone A. In zone D, the solution depends on both the upstream
and downstream boundary conditions and, through the zone A solution, on
the double initial condition. For any point in zone D, the solution will
depend on the history of the characteristic variables associated with the
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FIG. 1. Zones of tranquil flow

primary and secondary characteristics passing through that particular point
(x, t). For later times in zone D these characteristics will traverse the length
of the channel many times and the characteristic variables will have been
affected by the appropriate boundary condition at each reversal of the
characteristic.

The problem of unsteady flow in rivers and canals can be classified on the
basis of the nature of the boundary conditions. In problems of flood
routing, the aim is to predict the level or the flow at the downstream end of
the channel when given the level or the flow at the upstream end. In
estuarine hydraulics, the aim is to predict levels or velocities at various
points in the channel, given the variation of water level at the downstream
end. In either case the problem can only be adequately posed and solved if
both boundary conditions are specified. In hydrologic flood routing, only
the upstream boundary condition is properly specified and the downstream
boundary is either ignored or crudely approximated. By studying the
linearized St Venant equations for a finite channel reach with a properly
defined boundary condition at each end we can provide a basis for the
analysis of the errors involved in the solution due to the inadequate
specification of one of the boundary conditions. If both boundary conditions
are given as Dirichlet conditions for the same variable, either Q'{f) or A'{t)
being given at each end, then the solution will obviously be sought using the
prescribed variable as the dependent variable in (18). If one boundary
condition is given in terms of Q'(t) and the other in terms ofA'(t) then the
continuity equation (10) can be used to convert the latter boundary
condition from a Dirichlet condition in A'(t) to a Neumann condition in
Q'(t) and the problem can be solved in terms of Q'(x, t).
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3. Solution for finite channel reach
The solution of (18) for an upstream boundary condition and a semi-

infinite wide rectangular channel with Chezy friction is well known (4, 5,7).
The solution for any other shape of channel and any other friction law does
not involve any additional complexity except for the replacement of the
value for the parameter m in (13) by the general expression used to define it
(Dooge et al. (8)). The two-point boundary problem in which both an
upstream and a downstream boundary condition are taken into account has
not, as far as the authors are aware, been reported in the hydrologic
literature.

The basic equation to be solved is of the same form as (18) and the
dependent variable f(x, t) may be Q'(x, t) or A'{x, t) depending on the
nature of the boundary conditions. We shall consider the basic case in which
f(x, t) will be prescribed both at the upstream boundary x = 0 and at the
downstream boundary x = L.

The position is to solve the equation

subject to the double initial condition

/ ( JC,O) = O, (21)

df(x,0)/dt = 0, (22)

and subject to the boundary conditions

/(0, 0 = /„« , (23)

f{L,t)=fd{t). (24)

The solution can be sought in terms of the Laplace transform

f{x, s) = fexp (st)f{x, t) dt, (25)
Jo

which, when substituted into (20) and taking account of (21) and (22), gives

O, (26)

which is a second-order homogeneous ordinary differential equation. The
general solution can be written in the form

f(x, s) = Ax{s) exp [A,(s)x] + A2(s) exp [X2(s)x], (27)

where Aj and A2 are the roots of the characteristic equation for (26) and are
given by

Xu2(s)=es+f±(as2 + bs + c)L (28)
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Here the parameters a, b, c, e and / are functions of the channel parameters
and are given as follows:

1

L „ 6o(l - / I ) a y 36 - i40/% 6>y 3.4 2$, 1 + (w - l)F2
0

b~To G d F ^ ) 2 " t w ( w 2 ) 2 ' (29b)

^ ( 2 9 c )

4(1-F§)2 m W ( l - ^ ) 2 ' ( }

d = \b2 - oc, (29d)

The above relationships hold for any shape of channel and for any law of
rough turbulent friction.

The functions A^s) and J42(S)
 m (27) can be determined from the

boundary conditions. For the upstream boundary condition at x = 0
equation (27) becomes

s), (30)

and for the downstream boundary condition at x = L we have

fd{s)=Al(s) exp (^L) + A2(s) exp (^L), (31)

where /u(s) and fd{s) are the Laplace transforms of the upstream and
downstream boundary conditions. Solving (30) and (31) for the unknown
functions Ax(s) and A2(s) we obtain

/u(s) exp (A2L)-/„(*)
> l ( 5 ) = ( 3 2 a )

^ 2 ( S ) exp(A2L)-exp(A1L)'

where A,(s) and A2(s) are given by (28). Substituting these values in (27) the
solution for fix, s) can be written in terms of hu(x, s) and hd(x, s). These
formulations may be defined as the Laplace transforms of the responses of
the channel reach to delta-function inputs at the upstream and downstream
ends, respectively. Accordingly we write

/(*, s) = hu(x, s)fu(s) + hd(x, s)fd(s) (33)

and evaluate the downstream response hu(x, s) and the upstream response
hd(x, s) by combining (27), (28), (32) and (33). The downstream linear
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channel response of (33) is given by

, . r / _ ,sMi {(as2+ bs + c)l(L-x)}
K{X, s) = exp [(« +/)x] s^{{as> + b/+^L]" (34)

and the Laplace transform of the upstream linear channel response is given
by

The solutions given by (34) and (35) fulfill the conditions for the Laplace
transform that

hu(s)^>-0 a s s - x » , (36a)

M * ) - * 0 a s s - * oo. (36b)

The result for downstream movement in a semi-infinite channel can be
obtained from (34) by letting L-*°° and thus obtaining

hu(x, s) = exp {exs +fx - (as2 + bs + c)±x}. (37)

This is the general form of result obtained previously for a wide rectangular
channel with Chezy friction in (4, 5, 7, 8).

4. Solution in the time domain
It remains to invert (34) and (35) from the Laplace-transform domain to

the original time domain. It is only necessary to invert the two linear
channel response functions to the time domain since any boundary
conditions can be accounted for by convolution with the linear channel
responses; thus,

f(x, t) = hu(x, t) *fu(t) + hd(x, t) *fd(t). (38)

Equation (34) can be rewritten in the form

hu(x, s) = exp (esx +fx) x

s + c)lx}-exp{-(as2 + bs + c)i(2L-x)}

The inversion of (39) to the time domain is not straightforward though the
term exp (exs) is easily interpreted as a time shift and exp (fx) as an
amplification or damping factor independent of time.

We can expand the denominator of (39) into a convergent series

[1 - exp {-2L(as2 + bs + c)*}]"1 = 2 exp {-2nL(as2 + bs + c)*} (40)
n-0
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and operate on it term by term. When this is done we can write

K(x, s) = 2 exp {exs +fx- (2nL + x)(as2 + bs + c)l}
n - 0

- 2 exp {exs +fx - (2nL - x)(as2 + bs + c)*}. (41)

The explicit formulation of the upstream transfer function in the time
domain may be obtained by using the standard transform pair given by
Doetsch (9). For the expression in the transform domain we use

exp {-x(as2 + bs + c)*} - exp {-bxllaS - aSxs), (42a)

and for the corresponding function in the time domain,

(dla% exp (-btHa)^ - ax^hid^t1 - ax2)l/a]l(t - ah), (42b)

where It[ ] is a modified Bessel function of the first kind and 1( ) is a unit
step function. By adopting this standard transform pair it is possible to
invert (41) to the time domain, where the solution is found to have two
distinct parts. Thus we can write

*„(*,*) = *i(je,O + *ii(*,O- (43)
The first part of the solution, which may be termed the head of the wave, is
given by

hl(x, 0 = 2 e x P (-2/iLorx - a2x) 5{t - nt0 - x/ct)

oo

- 2 exp [-2(n + l )La , + a*] 6[t - (n + l)t0 - x/c2], (44)

where

«' = 2 ^ (l-Fl)F0 ' ( 4 5 3 )

>-fm*lzSZzM, (45b)
2ai y0 (1 + F0)F0

0
( 4 5 c )

(45d)

c2 = - l/(«i + e) = v0 - {gyo)\, (44e)

to = L/Cl-L/c2. (45f)

It can be seen that the head of the wave moves downstream at the dynamic
speed c, in the form of a delta function of exponentially declining volume
proportional to exp(—a2x). At x = L the delta function is reflected with
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inversion of sign and is then propagated upstream at the speed c2 and with a
heavier damping factor exp[-ar3(L-x)]. The second part of the solution,
which may be termed the body of the wave, is given by

oo

hl(x, 0 = 2 exp (-P^ + p2x)h(\lcx - 1/C2)(2/ZL + x) x
n-0

" 2 exp (-Pit + p2x)h(lld - l/c2)[2(n + l)L-x] x
n-0

x x

[{t-(n + l)t0 - xlc2) {t + (n + l)r0 - x/c,}]l

xl(t-(n + l)to-x/c2). (46)
The remaining parameters are given by

£=/-£= (m-l)*, (47b)

h = — = 2 •

For the upstream transfer function the head of the wave is given by

hxjix, 0 = 2 [—2/iLtt! — ar3(L — x)] d[t — nt0 + (L — x)/c2]
n-0

oo

- 2 H2 / I + 1JL*! - / L - a2jt] <5[f - n/0 + L/c2 - j t /cj (48)

and the body of the wave is given by
oo

h%x, 0 = 2 exp [-Pit - 02(L - x)]h(l/d - Vc2)[(2n + 1)L - x] x

nt0

" 2 exp [-/3,f - j82(L - JC)]A(1/C, - l/c2)[(2« + 1)L + x] x
n - 0

nt0 - x/c2 + L/Cj)(t -nto+ L/c2 -
[0 + ra/0 - x/c2 )( )]

xl(t-nt + L/c-x/c). (49)
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Since the modified Bessel function is itself represented by an infinite series

the solution is in the form of a doubly infinite series which seems too
complicated for practical application in river-flow forecasting. However, due
to heavy damping only the few first terms of the upstream and downstream
transfer functions would normally be required. The solution for the special
case of the downstream movement of the flood waves in a semi-infinite
channel is well known (4, 5, 7, 10). The general solution for a semi-infinite
channel has recently been published (8). This special case of the semi-
infinite channel has the solution

hu(x, t) = 6(t- x/cO exp (~a2x) +

which corresponds to the use of only the first term in (44) and (46).

5. Summary and conclusions

The effect of the downstream boundary condition on unsteady flow in
rivers is explored through the analysis of the linearized St Venant equations.
It is found that there are two effects of the inclusion of the downstream
boundary condition: (1) the direct upstream transmission of the effect of the
downstream boundary condition in accordance with (33) and (35); (2) the
generalization of the downstream response to the upstream impulse from a
single term to an infinite series as in (34) because of the continual reflection
of the upstream generated wave up and down the channel. The form of the
two impulse-response functions indicates that the infinite series involved
are highly convergent. The verification of this for particular cases is outside
the scope of the present paper. Some numerical examples for the special
case of low Froude numbers have been published (8, 11). The extension of
these numerical investigations is at present underway for the case of any
Froude number between zero and unity and to answer such practically
important questions as the effect of the assumption of a steady-state rating
curve at the downstream end on the accuracy of the solution.

The linearized solution obtained in this way can be used to evaluate the
relative effectiveness of the procedures used in numerical methods of
solution to handle the downstream boundary condition in the absence of a
definite control. These practical procedures include the use of a steady
rating curve or the use for computational purposes of a length of channel
considerably longer than the channel reach of interest (3). The solution is
also useful as a basis for evaluating the extra degree of approximation in
hydrologjc routing methods due to neglect of the downstream boundary
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condition over and above the approximation involved in the simplification
of the dynamic St Venant equation or its replacement by a conceptual
model (7).
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