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Abstract 

A number of forms of the diffusion analogy approxirnation to the linearised St. Venant 
equation for fl.ood routing in channels are compared. lt is suggested that the diffusion ana
logy based on the kinematic wave approxirnation of certain terms be used. The upper limits 
for the dimensionless wave number are given for certain prescribed levels of error in the 
diffusion analogy predictions for the phase velocity and for the attenuation per unit length. 

1. INTRODUCTION 

The degree of approximation involved in replacing the complete St. Venant equations 
by a diffusion analogy method or by a kinematic wave method has been discussed by a 
number of authors. Some of these authors have approached the subject through harmonie 
analysis. This can be done either by means of a frequency analysis of the linearised St. Ve
nant equations with harmonie boundary conditions (Grijsen and Vreugdenhil , 1976; 
Vreugdenhil, 1972, 1977) or by wave number analysis of the linearised equations (Me
nendez and Norscini, 1982; Pon ce and Simons, 1977; Pon ce et al. , 1978). 

The present note comments briefly on three points: (I) the existence of more than one 
form of the diffusion analogy; (2) the selection of that form of diffusion analogy which 
approximates most closeły to the complete St. Venant equations; (3) the possibility of for
mulating a simple criterion for the range of applicability of this model of the diffusion ana
logy. The discussion will, for the sake of brevity, concentrate on the special case of a wide 
rectangular channel with Chezy friction and on wave number analysis. 
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2. COMPLETE LINEAR EQUATIONS 

The linearised St. Venant equations for one-dimensional unsteady flow in a broad 
rectangular channel with Chezy friction may be written as (Deymie? 1935; Ponce and 
Simons, 1977): 

oy oy ov 
- +vo- +Yo - =0, 
at ax ax 

(1) 

oy + Vo ~+~~=So(~-~)• 
ox g ox g ot Yo Vo 

(2) 

where y is the perturbation in depth from the reference depth y 0 , vis the perturbation in . 
velocity from the reference velocity v0 , g is the acceleration due to gravity, S0 is the bottom 
slope of the channel, t is the elapsed time, and x is the distance along the channel. 

By eliminating v(x, t) from equations (1) and (2) we can obtain a single second order 
equations in y (x, t) given by: 

2 o2y o2y oy 2gS0 oy 
(gy0 - vo) - -2v0 - =3gS0 --+- --- . (3) 

ox 2 ox ot OX Vo ot 

The above equation can be expressed conveniently in dimensionless form (W oolhiser and 
Li ggett, 1967) by using the bottom slope of the channel (S0) and the depth and velocity 
(y 0 , v0 ) of the steady uniform reference condition about which perturbations are taken. 
Thus we can write 

and transform equation (3) to 

I y 
y =- · 

Yo 

I X 
X= - , 

Yo 

So 

, t 
t =--

Yo 
So Vo 

2 a2y' 2 azy ' 2 azy ' oy ' oy' 
0.5(1 - F0 ) ----i2- F0-

0 
,,,. ,-0.5F0 --;--;-2= 1.5 -;--; + -;-;- . 

OX X ut ut uX ut 

where F0 = v0/-J gy0 is the Froude number for the reference flow co ndition. 

3. VARIETY OF DIFFUSION ANALOGY MODELS 

(4) 

(5) 

(6) 

(7) 

In the case of many river channels, the second and third terms in equation (2) are of an 
order of magnitude smaller than the other three terms in the equation (Cunge et al. , 1980; 
Henderson, 1966; Kuchment, 1972). If these two smaller terms are neglected so that 
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equation (2) becomes 

oy =So(~-2~) ox Yo Vo 

and v(x, t) is now eHminated between equation (1) and equation (8) we obtain 

oy oy Vo Yo o2y 
- +1.5v0-=-- --ot ox 2S0 ox2 
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(8) 

(9) 

instead of equation (3). The approx.imation represented by equation (9) is of the same form 
as the convective-diffusion equation 

oy oy a2y 
-+c-=D-ot ax ax2 

(10) 

and consequently known solutions of the latter equation can be applied to fiood routing 
(Hayami, 1951 ; Schonfeld, 1948). For this approximation based on neglecting terms in 
equation (2) (Ponce and Simons, 1977; Ponce et al., 1978) the parameters of the con
vective-diffusion equation are related to the parameters of the channel and the reference 
flow conditions by 

C= 1.5V0 

which is the kinematic wave speed and 

Vo Yo 
D= -

250 

which is equivalent hydraulic diffusivity of the channel. 

(11) 

(12) 

lf, altematively, we examine the dimensionless form of the equation, a somewhat 
different approximation is suggested. As the Froude number approaches zero, then the 
second and third term in equation (7) obviously tend to zero and the same must be true of 
the corresponding terms in equation (3). If these terms are neglected then we also have 
a convective-diffusion equation. In this case the convective parameter c is again given by 
equation {11) but the equivalent channel diffusivity is 

D=(l-F~) VoYo 
. 250 . 

(13) 

which will differ from that given by the first approximation particularly for higher Froude 
num bers. 

Yet another form of diffusion analogy can be derived if instead of neglecting small terms 
entirely, they are represented by one of other of the surviving terms oń the basis of the 
kinematic wave approximation (Dooge and Harley, 1967). For the kinematic wave 
approximation (Ligh thill and Whi thaJV., 1955) we can write the solution for the per
turbation in depth as: 

„ 

y 
- =! (x-l.5v0 t). 
Yo 

(14) 
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lnsertion of this solution in equation (1) reveals that to satisfy continuity we must write 

V 
- =0.5f(x-1.5v0 t) 

Vo 
(15) 

where the same function can be used since there is by definition no phase shift for the 
kinematic wave solution (Menendez and N orscini, 1982). This !ower order solution can 
be used to approximate either the terms neg!ected in equation (2) or the terms .neglected in 
equation (3). 

IT we wish to approximate the second term in equation (2) on the basis of the kinematic 
approximation then we write 

Vo av V~ 1 V~ ay - -=- ! (x-1.5v0 t)=0.5 - - · 
g ax 2g gy ax 

Similarly we write the third term as 

1 av V~ 
1 

V~ ay 
- -= -1.5-/ (x-1.5v0 t)= -0.75 - -. 
g at 2g UYo ax 

Inserting these two approximations into equation (2) we obtain 

(1 _ F~) ay =So(I.- 2v) . 
4 ax Yo Vo 

ITv(x, t) is eliminated between equations (1) and (18) we get 

ay +1.5vay =(1 _F~)v0Yoa
2

y 
ot ox 4 2S0 ax2 

which lead to a value of 

D=(l-F~) VoYo 
4 2S0 

for the equivalent channel diffusivity. 

(16) 

(17) 

(18) 

(19) 

(20) 

IT alternatively we wish to make the approximation in equation (3) then we write the 
second term as 

(21) 

and the third term as 

a2y 2 ! " 2 azy 
- - 2 = -2.25v0 (x-1.5v0 t)= -2.25v0 - 2 • ot ax 

(22) 

Substitution of these approximations in equation (3) also gives the convective diffusion 
equation in the form of equation (19). 
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4. CHOJCE OF FORM OF Dl FFUSTON ANALOGY 

The three forms of the diffusion analogy discussed in the last section all agree in pre
dicting the convective parameter as 

c=l.5v0 (11) 

which is the kinematic wave velocity. Accordingly all of them will predict the first moment 
or lag of the linear channel response (LCR) as 

I X 
U 1(LCR)=

l.5v0 
(23) 

which is identical to the value for the complete linearised equation (Dooge and Har1ey 
1%7). They differ however in their prediction of the equivalent cbannel ditfusivity D excep 
for the limiting case of F= O. Accordingly the question arises of whether any one particula 
form of diffusion analogy approximation can be shown to be preferable to the others. 

On general grounds one could expect that the models based on the approximations of 
terms through the kinematic wave approximation would be preferable to those based on 
compłete neglect of these terms. These generał considerations are reintorced by comparing 
some properties of equation (19) with other known results in open channel hydraulics. 
Firstly, the model represented by equation (19) unlike the other two models, indicates that 
diffusivity wi11 become negative (i.e. disturbances will amplify) for F0 >2. Secondly, the 
second moment about the centre of the area of the solution of the complete St. Venant 
equation represented by equation (3) for a delta function input is given by Dooge and 
Harley (1967): 

2 2 Yo ( x )
2 

U2= - (1-0.25Fo)- - -
3 S0 x 1.5vo 

(24) 

and for the diffusion analogy represented by equation (IO) is given by 

U2 = 2D (_:_)2· 
ex c 

(25) 

Using the value of c from equation (11) which is common to all forms of the ditfusion ana
Jogy and equating these two valucs for the second moment we get 

D=(l-0.25F~) VoYo 
2S0 

(26) 

which is the value already obtained by using the kinematic wave solution to approximate 
terms in equ.ations (2) or (3). 

lt is suggested that any discussion of the range of applicability of the diffusion analogy 
shoułd be confined to this form of the analogy which reproduces exactly the first and second 
moments of the complete linear solution. ln the finał section of this note, the wave analysis 
method used by Ponce and Simons (1977) will be applied to the question of the range of 
applicability of this particular model. 
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S. WAVE NUMBER ANALYSIS OF DIFFUSION ANALOGY 

The solution for a harmonie perturbation in depth of either the complete equation or of 
the diffusion analogy approximation can be sought in the form 

y= Ymexp [i(ux-Pt)], (27) 

where u is the real wave number and Pis the complex propagation factor. Alternatively this 
solution can be written in terms of a dimensionless wave number 

, Yo 
u= - u 

So 
(28) 

and of a dimensionless propagation factor P' given by 

(29) 

so that the solution can be written as 

y= Ymexp [i(u'x' -P't')]. (30) 

Either the substitution of equation (27) in to equation (3) and the use of equations (28) and 
(29) or the substitution of equation (30) into equation (7) gives 

F~(p')2 -2(u'F~-i)P' -[u'(1-F~)+3u'i] =0. (31) 

Equation (31) corresponds to the characteristic equation derived by Ponce and Simons 
(1977) but in present paper is derived without using the assumption of a zero phase shift 
between depth and velocity which is only true for the limiting case ot a' =0 (the kinematic 
wave approximation). 

The dimensionless phase velocity for the complete equation is given by 

1 Ce p~ 
c = - = -· 

c Vo a' 
(32) 

The logarithmic decrement (the attenuation over a single wave length) is given by 

ó' =21t p~' 
c p~ 

(33) 

where p~ and p; are the real and imaginary parts of the complex propagation factor P' 
which is defined by equation (31). 

Substitution of equation (27) in to the general equation (10) for diffusion analogy gives 

f3 =ca - iDu2 (34) 

which from equations (I I) and {12) - or equation (13), or equation (20) - can be written 
as 

f3=1.5v0 a+ i (1- rF~) a2
, (35) 

where the value of r depends on the particular form of the diffusion analogy model. 
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Accordingly, the dimensionless phase velocity corresponding to equation (32) is 

C~=l.5 

and the dimensionless logarithmic decrement correspond to equation (33) is 

u' 
c5~=21t(1-rF~)-, 

3 

where r depends on the model used. 
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(36) 

(37) 

The ratio of the attenuation over a single wave length for a diffusion analogy model to 
the attenuation for the complete solution will be given by · 

exp(c5~-c5;)'=exp{-21t[(l-rF~) ~' - :~1]}. (38) 

Fig. 1 shows the attenuation ratio for the primary wave as a function of the dirnensionless 
wave number a' for the diffusion analogy model used by Ponce and Simons (1977) for 
which r=O for the case of subcritical flow. Fig. 2 shows the same ratio for the diffusion 
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Fig. 1. Attenuation ratios for diffusion analogy with r=O 

analogy model proposed by Dooge and Harley (1967) in which r=0.25. The fact that the 
latter model gives a closer approximation over a wider range of dimensionless wave num
bers at any given Froude nwnber reinforces the arguments put forward to support this 
model in the last section. There will be no difference in attenuation for the limiting case of 
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Fig. 2. Attenuation ratios for diffusion aaalogy with r=0.25 

Table 1 
/ 

Range of applicability for diffusion aaalogy models 

Level of error 
(1) 

1% 
5% 

10% 

Limitiog value of a' 

for r = O (2) for r = 0.25 (3) 

0.02 0.31 
0.097 
0.19 

0.51 
0.64 

(8 ) 

F0 =0 and the maximum difference in attenuation in subcritical flow will be for F0 =1. 
Table I compares the range of the two models for different levels of prescribed error for 
F0 = I. The range for the model with r = 0.25 is seen to be many times that for the model 
with r = O particularly at low lev eis of prescribed error. 

6. RANGE OF APPLICABILITY OF DIFFUSION ANALOGY 

The phase velocity for the complete equation is obtained by solving equation (31) for 
the complex propagation factor and applying equation (32). The resulting value of c; for 
the complete equations is presented graphically by Ponce and Simons (1977). The ~rror 
in phase velocity for the cliffusion analogy can be determined from 

c~ 
CR= - · 

c' • 
(39) 
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Fig. 3. Error in diffusion celerity for subcritical flow 
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This ratio is plotted in Fig. 3 as a function of the dimensionless wave numbe::r. From this. 
figure it can be seen that all forms of the diffusion analogy give a good approximaticin of the 
phase velocity for wave numbers less than the limit defined by 

q' <0.62 (40) 

to ensure that the error is less than 5 %- The criteria for other levels are given in the second 
column of Table 2. The above results are applicable to all version.s of the diffusion analogy 
discussed earlier. 

In the case of the attenuation the results will differ for the various models and the 
discussion is confined to the Dooge and Harley (1967) model which a number of criteria 

Table 2 

Error levels in phase velocity and attenuation per unit 
Jength 

Level of error 1 ---L_irru_·t_in_g_v~a_lu_e_o_f_u_' _ _ _ 
(1) for c (2) for o (3) 

1 % 0.27 0.41 
5% 

10% 
0.62 
0.89 

0.60 
0.71 

indicate to be the most accurate approximation. In the last section the ratio of the diffusion 
analogy attenuation to the complete equation for a single wave length was approximated 
and plotted as a function of the dimensionless wave number in Fig. 2. In practice we need 
an estimate of the error over a fixed length of channel rather than the error over individual
wave lengths. The logarithmic decrement for a fixed length is given by 

~ I I p~ 
u= <J X - · 

P's. 
(41) 

The ratio of the two attenuations for a fixed length is given by 

exp [(f>4 -f>c) <J
1
x'] = exp {-21t<J

1

x' [c1-rF5) .~' - :~J} · (42} 
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Fig. 4. Error in diffusion analogy attenuation per unit length for subcritical flow 

The ratio is shown in Fig. 4 for the case of x' = l which is usually taken as representing a 
relatively short channel. For multiplies of this length the attenuation ratio can be obtained 
by raising the ratio for unity length to the appropnate power. Fig. 4 suggests an appropriate 
<::riteri on for 5 % error in a unit length as 

q' <0.60. (43) 

The maximum dimensionless wave length for other levels of error attenuation ratio per unit 
łength are spown in the third column of Table 2. 

7. CONCLUSIONS 

Three alternate forms of a convection-diffusion equation suitable for flood routing 
applications has been presented. The first is the classic one, based on neglecting inertia 
altogether in linearised St. Venant equations, in which the hydraulic diffusivity is indepen
dent of Froude number. The second form is based on the partial neglect of inertia. The 
equivalent diffusivity differs from that given by the classic form particularly for higher 
Froude numbers. The third form ot diffusion analogy is derived by approximating the 
inertia terms on the basis ąf the kinematic wave solution. This form reproduces exactly the 
:first and second moments of the complete linear solution. This indicates, that this form of 
the diffusion analogy is the most suitabłe of the three alternative forms. 
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The range of applicability of third form for fiood routing applications is discussed in 
terms of the wave analysis method for a number of Froude numbers between O and 1 and a 
number of dimensionless wave numbers (uy0/S0 ) between O.Ol and 10. 

Manuscript reccived 12 May 1986 
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ZASTOSOWANIE ANALOGU DYFUZYJNEGO 
W MODELOWANIU TRANSFORMACJI FALI POWODZIOWEJ 

Streszczenie 

Porównano trzy modele dyfuzji konwekcyjnej, aproksymujące zlinearyzowane równania St. Ve
nanta. Do symulowania transformacji fali powodziowej zaleca się stosować model otrzymany przez 
oszacowanie składników inercyjnych za pomocą fali kinematycznej. Przeanalizowano błędy tłumienia 
i prędkości fazowej tego modelu. Podano graniczne wartości bezwymiarowej liczby falowej dla wy
branych poziomów błędów. 
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