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Abstract

Multivariate versions of variable bandwidth kernel density estimators can lead to improvement over
kernel density estimators using global bandwidth choices. These estimators are more flexible and better
able to model complex (multimodal) densities. In this work, two variable bandwidth estimators are
discussed: the balloon estimator which varies the smoothing matrix with each estimation point and the
sample point estimator which uses a different smoothing matrix for each data point. A binned version
of the sample point estimator is developed that, for various situations in low to moderate dimensions,
exhibits less error (MISE) than the fixed bandwidth estimator and the balloon estimator. A practical
implementation of the sample point estimator is shown through simulation and example to do a better
job at reconstructing features of the underlying density than fixed bandwidth estimators. Computational
details, including parameterization of the smoothing matrix, are discussed throughout. (¢) 2002 Elsevier
Science B.V. All rights reserved.

Keywords.: Binning; Cross-validation; Mean integrated squared error; Smoothing matrix; Variable band-
width kernel

1. Introduction

The kernel density estimator has become a staple in the data analysis tool box
largely because of the flexibility of the method. Research has shown theoretical
superiority over such naive estimators as histograms and the practical benefits are
clear. With cross-validation (Rudemo, 1982; Bowman, 1984) and plug-in (Sheather
and Jones, 1991) rules for choosing smoothing parameters, data-driven, automatic
bandwidth selection has achieved a certain level of maturity.
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Bandwidths are generally chosen based on the relatively simple but important idea
of balancing bias and variance globally. Consider the multivariate kernel density
estimator given by

R 1 n X 1 n
f(X)=nhdZ_1:K (" h">=n;1<h(x—xi), (1)

where Xi,...,X, is a d-variate random sample with density f. The kernel, K, is
taken to be a d-variate density function with [K(w)dw=1, [wK(w)dw=0, and
[ ww'K(w)dw=1,. The contours of the kernel are restricted to be spherically sym-
metric and the smoothing parameter, 4, controls the size of the kernel.

Straightforward asymptotic approximations yield integrated squared bias (ISB) and
integrated variance (IV) equal to

R(K 1
(K) and ISB:4h4a}4</tr2{v2f(x)} dx,

V=

nhd

where R(K)= [ K?(w)dw, tr indicates the trace of a matrix, and /2 f(x) is the
Hessian (matrix of second partial derivatives) of f. Combining these terms yields
an estimate of the mean integrated squared error, MISE=FE [{ f (x) — f(x)}*dx.
The optimal bandwidth can then be easily derived and is equal to

dR(K) - J(d+4)
o [ {72 f(x)} dx '

This choice of 4 yields an MISE = O(n=4+4),

This bias-variance trade-off works well for many densities, especially those den-
sities that are unimodal and are not extremely skewed. However, as the dimension-
ality increases, the so-called curse of dimensionality becomes influential. The effect
on multivariate density estimates is well noted (Friedman and Stuetzle, 1981; Scott
and Wand, 1991). Due to the sparseness of data in higher dimensions, multivariate
neighborhoods are generally empty, particularly in the “tails” of the density (Ex-
ercise 4.1 in Wand and Jones, 1995). Furthermore, there is less probability mass
near the mode. Not only does this have the effect of slowing the convergence rate
of the MISE as dimensionality increases, but the relative contributions of variance
and bias change. In the univariate setting, the ratio of bias to variance is 4:1. For
general dimensions, this ratio is 4:d. Hence, as the dimension increases, larger and
larger bandwidths are necessary to control the increased variability, particularly the
contributions from the tails. However, this also has adverse effect of averaging away
features near the modes.

Sain and Scott (1996) give another example of where this trade-off between vari-
ance and bias fails. Consider a bimodal normal mixture of the form f(x)=3/4¢(x+
3/2)+1/4¢13(x—3/2), where ¢,(x—u) is a normal density with mean p and variance
o?. This mixture is characteristic of a density that is difficult for the kernel estimator
in that the modes are of equal height but have differing scales. The globally optimal
smoothing parameter of a sample of size n =200 is & =0.248. Considering the sam-
ple sizes associated with each mode, the optimal smoothing parameters are 4 = 0.403
and 0.175, respectively. Again, the global value reflects an attempt to find some sort

hAMISE =
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of middle ground between what is optimal for each mode. However, this value of
h will undersmooth or oversmooth, depending on the mode, and the analyst will be
faced with the difficult decision of choosing which features are real and which are
noise.

Graphical ideas such those proposed by Minnotte and Scott (1993) and Chaud-
huri and Marron (1999) have proven to be effective aids for exploring structure in
univariate multimodal densities. Both approaches use a family of kernel estimates,
where the bandwidth is allowed to range from small to large. These methods are
attractive in that they allow the user to change “resolution” by focusing on large
bandwidths to gain insight into general structure and then smaller bandwidths for
finer detail. However, they serve to emphasize the lesson that a single smoothing
parameter can be ineffective for more complex densities.

In low to moderate dimensions, varying the amount of smoothing is a possible
solution. Intuitively, the task seems straightforward. More smoothing is necessary
where data are scarce (i.e. tails and valleys) and less smoothing is necessary near
modes. However, it is not as simple as modeling the bandwidth as a function of the
height of the underlying density alone. Some attempt to account for the curvature
must be made as well (Sain and Scott, 1996). Actually, it has proven difficult to
gain understanding of exactly how to vary the bandwidth and, furthermore, how to
apply this understanding to varying the bandwidth in practice, particularly in the
multivariate case.

In this paper, variable bandwidth estimators will be studied in the multivariate
setting. Following a brief introduction to the fixed bandwidth multivariate kernel
estimator (Section 2), a multivariate version of the binned sample-point estimator
is introduced and a comparison of two common approaches to variable bandwidth
estimators is presented (Sections 3 and 4). Section 5 details practical algorithms for
implementing a variable bandwidth estimator and discusses some of the issues and
problems associated with variable bandwidth estimation in practice.

2. Fixed bandwidth estimators

The general multivariate kernel density estimator is given by

A 1 < _ 1 ¢
f(x)zW;K(H 1/2(xxi))=nizleH(xxi>. (2)

Unlike (1) the smoothing parameter, H, is actually a symmetric positive-definite ma-
trix that is analogous to the covariance matrix of K. Hence, Ky (x) = |H|~"2K(H~12x).

Straightforward asymptotic analysis involving multivariate Taylor’s series expan-
sions can yield an estimate of the MISE. Following Scott (1992) or Wand and Jones
(1995), an asymptotic approximation of the MISE is given by

RK) 1

+ /trz(H v f(x))dx, (3)

AMISE =
aH['? " 4

where | - | indicates the determinant of a matrix.
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Choosing the form of H depends on the complexity of the underlying density
and the number of parameters that must be estimated. Wand and Jones (1993) give
an excellent discussion of the issues in the bivariate case. There are three primary
classes for parameterizing the smoothing matrix. Assuming that K is a multivariate
normal kernel, i.e. K(x)=(2n)"%?exp(—x'x/2), the first class was introduced in
(1). This kernel has contours that are spherically symmetric and it has only one
independent smoothing parameter. In keeping with the notation of Wand and Jones
(1993), this class will be denoted as #°; where #| = {h*I; h > 0}.

The second class, #;, allows kernels that are ellipsoidal. However, the axes are
restricted to be parallel to the coordinate axis. Here, d independent smoothing param-
eters are allowed and #, = {diag(h?,...,h%); hi,...,hs > 0}, where diag indicates a
diagonal matrix. This class is commonly referred to as the product kernel estimator
and allows different amounts of smoothing in each dimension. The optimal band-
widths, hy,...,h; are still proportional to n=1@+4% and the AMISE is of the same
order as ;. However, some gain can be obtained by using different smoothing
parameters for each dimension, especially when the scales of the variables differ.

The final class, in which a full smoothing matrix is employed, involves d(d+1)/2
independent smoothing parameters and is denoted as 5. This class allows ellipsoidal
kernels of arbitrary orientation and is given by

h%:hll hld
Hy= 3 My hg >0, ’hi]“ < hihj, i#j
hld hzzhdd

Unfortunately, there is no closed form expression for the optimal smoothing matrix
in this case. Numerical methods are required to find H for a candidate density and
a particular sample size.

In practice, a common approach is to scale the data so that the sample variances are
the same in each dimension or to sphere the data in which a linear transformation
is applied that yields an identity sample covariance matrix. These approaches are
essentially dimension reduction ideas as they allow for the use of a single smoothing
parameter () with the transformed data. However, Wand and Jones (1993) urge
caution when using these approaches as they are not guaranteed to give the correct
transformation or rotation to achieve the gains possible by using the full smoothing
matrix. Many authors have noted that for most densities, in particular unimodal ones,
allowing different amounts of smoothing for each dimension (the product kernel
estimator, #,) is adequate. With more complex densities, especially multimodal
ones, the situation is less clear, although rotations can help if the structure of the
distribution can be aligned with the coordinate axis (Wand and Jones, 1993).

3. Locally adaptive density estimation

One could consider a bandwidth function that adapts to not only the point of esti-
mation, but also the observed data points and the shape of the underlying density. As
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a matter of practice, however, two simplified versions are common. The first varies
the bandwidth at each estimation point and is referred to as the balloon estimator.
The term balloon estimator was first used by Terrell and Scott (1992) and is based
on a suggestion of Tukey and Tukey (1981). The second varies the bandwidth for
each data point and is referred as the sample-point estimator. See Jones (1990) for
a detailed comparison of the two estimators in the univariate case.

3.1. Balloon estimators

The general form of the balloon estimator is given by
? _ 1 - —1/2 _ 1 -
F 0= o ,;K(H(X) (x—x))=" ;Kﬂ(x>(x -x). 4

where H(x) is the smoothing matrix for the estimation point x. Considered pointwise,
the construction of this estimator is the same as the fixed bandwidth estimator given
in (2). For each point at which the density is to be estimated, kernels of the same size
and orientation are centered at each data point and the density estimate is computed
by taking the average of the heights of the kernels at the estimation point.

This type estimator was introduced by Loftsgaarden and Quesenberry (1965) as
the kth nearest-neighbor estimator which can be written as in (4) by taking K to be
a uniform density on the unit sphere and by restricting the smoothing matrix to ;.
Thus, the bandwidth function can be written as /;(x) which measures the distance
from x to the kth nearest data point.

Much has been written about the kth nearest neighbor estimator that suggests it
is not an effective density estimator in the univariate case. The bandwidth function
is discontinuous and these discontinuities manifest themselves directly in the density
estimate (Silverman, 1986). Furthermore, the estimator suffers from severe bias prob-
lems, particularly in the tails (Mack and Rosenblatt, 1979; Hall, 1983; Terrell and
Scott, 1992). However, Terrell and Scott (1992) show that the kth nearest-neighbor
estimator improves as dimensionality increases and will perform well in dimensions
greater than 4.

Terrell and Scott (1992) also study error properties of the general balloon esti-
mator and found some remarkable results. Applied pointwise, the balloon estimator
behaves just like the fixed bandwidth estimator. The authors show that by choosing
the orientation of the smoothing matrix appropriately, the bias can be dramatically
reduced. In fact, the bias will be of higher order for points in certain regions of the
underlying density. These regions correspond to where the density is saddle shaped,
e.g. outside the unit ball for a multivariate standard normal density.

3.2. Sample-point estimators

The multivariate sample-point estimator is given by

» 1 ¢ 1 IR
fsx)=- Zl TGy K HE) ™= x)) = ;Kﬂ(m(x -x), (5
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where H(x;) is the smoothing matrix associate with x;. The sample-point estimator
still places a kernel at each data point, but these kernels each have their own size
and orientation regardless of where the density is to be estimated.

This type of estimator was introduced by Breiman et al. (1977), who suggested
using H(x;) = A (x;)I. Asymptotically, this is equivalent to choosing bandwidths pro-
portional to f(x;)~ "¢ where d is the dimension of the data.

Abramson (1982a, b) suggested the square-root law, i.e. using bandwidths pro-
portional to f(x;)~"/? and, in practice, using a pilot estimate of the density to
calibrate the bandwidth function. This formulation of the bandwidth function has
been popular in no small part due to the early results that show that the point-
wise bias associated with the square-root law was of higher order (Silverman, 1986;
Hall and Marron, 1988; Jones, 1990). However, recent work has shown that this
early result may not always hold globally due to bias contributions from the tails
(Hall, 1992; McKay, 1993; Terrell and Scott, 1992; Hall et al., 1994; Sain and
Scott, 1996).

The square-root law also suffers from a certain inflexibility by restricting the band-
width to be only a function of the height of the density. In order to provide a more
general study of the properties of the sample-point estimator, Sain and Scott (1996)
introduce a binned version that uses a piecewise constant bandwidth function. In that
work, the authors showed that the estimator did not exhibit a higher-order MISE but
it did lead to substantial improvement over the fixed bandwidth estimator in the
univariate case.

A multivariate version of the binned sample-point estimator is given by

. 1 m ) 1 m
fs=-%" ‘H(:WK(H(Q)_W(X —t) ==Y nKug(x—t).  (6)
Jj=1 J j=1

where n; is the number of data points in the jth bin, t; is the center of the jth
bin, and H(t;) is the smoothing matrix associated with the jth bin. In general, an
equally spaced mesh of points is laid down over the support of the density to define
the bins, although other binning rules such as the linear binning defined in Hall and
Wand (1996) could be considered.

Binning has been used in density estimation for a variety of reasons. Hall (1982)
studied rounded and truncated data. Silverman (1982), Hérdle and Scott (1992),
Wand (1994), and Hall and Wand (1996) use binning as a device that can radically
reduce computing time. Scott and Sheather (1985) build on the result of Hall (1982)
and show that binning results in an inflated bias but that the MISE is insensitive to
reasonable amounts of binning.

For adaptive estimation, binning becomes much more than a computational tool.
Computing the bias of an adaptive estimator is difficult, if not impossible, without
specifying the form of the bandwidth function as was done with the square root law.
Through binning, the expectation of the estimator in (6) is easily computed by noting
that the only random quantities are the n;, j=1,...,m. These counts can be thought
of as a realization of a multinomial distribution with parameters p; = [ 5, f(x)dx,

where B; denotes the jth multivariate bin.
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Assuming that K is a multivariate normal kernel, the MISE of the multivariate
binned-sample point estimator is explicitly given by

MISE=E [ [ (0 - f(x)F dx
= % Z:Enj2 / qﬁ,/_(x —t;)dx
J
v Z; By [ b (x ~ ) (x 1)) dx
i#]
2
S35 [ dux - )7+ RO
J
1 pi(l—p)+np; n—1
S Rt Pt =)
2
S35y [ x4 (0 dx 4 RO, )
J

where H; = H(t;). Note that the normal integrals follow directly from formulae such
as those presented in the appendices to Wand and Jones (1995). By specifying f,
usually as some sort of normal mixture, the probabilities p;, j=1,...,m can be
computed and then the MISE function optimized over the collection of smoothing
matrices H;, j=1,...,m.

4. A comparison of variable bandwidth methods

Comparing optimal bandwidth functions for the balloon and the sample-point es-
timator is a difficult task, especially in the multivariate setting. However, developing
an understanding of how optimal smoothing parameters behave is important and will
yield insight into designing practical algorithms. It would seem reasonable that there
is some sort of fundamental relationship between the two methods, at least asymp-
totically. Sain and Scott (1996) noticed some similarities between the sample-point
estimator and the so-called zero-bias bandwidths discussed by Hazelton (1998), Sain
and Scott (2001), and Devroye and Lugosi (2000). However, for finite multivariate
samples, some differences appear.

To illustrate, let f to be a bivariate standard normal, K be standard normal, and
n=100. Fig. 1 display optimal kernels for the fixed bandwidth estimator, the balloon
estimator and the binned sample-point estimator using an equally spaced mesh with
9 bins per dimension. Two versions of the sample-point estimator are considered.
One restricts the contours of the kernels to be circular (1) while the second allows
unrestricted size and orientation (#3). See Sain (1994) for details on computing the
optimal kernels for the balloon estimator.

Four cases are considered, corresponding to bins centered at the origin and along
the x-axis at 0.9, 1.8, and 2.7. These correspond to the mesh for the sample-point
estimator being laid down on the square defined by (—3,3) x (—3,3). Since the
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Fig. 1. Optimal kernels for a fixed bandwidth estimator (solid line), balloon estimator (dotted

lines), sample-point estimator with the smoothing matrix restricted to 5 (short dashed lines), and

sample-point estimator with an unrestricted smoothing matrix (long dashed lines). Ellipses are 95%
contours of the kernels.

contours of the density are radially symmetric, it follows that the contours of the
optimal kernels centered at different bins, but at the same distance from the origin,
will behave similarly.

The optimal kernel for the fixed bandwidth estimator has contours that are circu-
lar regardless of where the density is being estimated, which data point, or which
parameterization of the smoothing matrix is used. The 95% contour of this kernel is
plotted in Fig. 1 as a solid line. It is centered at the origin as a reference and an
indication of scale for the variable bandwidth kernels.

When examining the optimal kernels for the balloon estimator and the sample-point
estimator, it is important to keep in mind the construction of the estimator. For the
balloon estimators, the same kernel is used for all data points and it is allowed to
vary with the estimation point. For the binned-sample point estimator, the density is
estimated by placing a weighted kernel at the center of the bin with each bin having
a different size and orientation. In practice, the kernels are assumed to be the same
for each data point in the bin. These kernels do not change with the estimation point.

First, consider the kernels at the origin (||x|| =0.0) in Fig. 1. All of the kernels are
circular which is no surprise considering the structure of this density at the origin.
However, all of the variable bandwidth kernels are smaller than the fixed bandwidth
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Table 1
MISE values for fixed and sample-point adaptive methods using a normal kernel with 5, and a
N(0,1;) density. Sample size is n =100

Estimator Bins per dimension d=1 d=2 d=3

Fixed 0.00541 0.00431 0.00240

Sample-point m=35 0.00926 0.00655 0.00201
m=9 0.00333 0.00306 0.00173
m=15 0.00305 0.00273 0.00162

kernel. In the next plot, ||x|| =0.9, the center of the bin is still within the unit circle.
The fixed bandwidth kernel is still much larger than the sample-point kernels which
are still roughly circular. The balloon estimator kernel is already adjusting to the
local curvature and the major axis of the ellipse is parallel to the line between the
origin to the center of the bin.

The third plot, ||x|| = 1.8 shows the kernels for the bin just outside the unit circle.
Now the variable bandwidth kernels are much larger than the fixed bandwidth kernel.
However, a distinct change in orientation is noted between the balloon kernel and
the unrestricted sample-point kernel. Recall the balloon kernel has higher-order bias
in this region and is based on the fourth-order derivatives of the density. Hence,
the orientation changes, with the major axis of the ellipse being perpendicular to the
line between the origin and the center of the bin. The major axis of the unrestricted
kernel retains the lower-order bias behavior with the major axis of the kernel parallel
to the origin.

Moving even further out into the tails of the density, ||x|| =2.7, the variable band-
width kernels dwarf the fixed bandwidth kernel, with the restricted sample-point
kernel being exceptionally large. This phenomenon is explained by the sample-point
estimator with the restricted kernels attempt to minimize variability in the tails by
trading a much larger size for the correct orientation. Note that the kernel for the
sample-point estimator is much larger than the balloon estimator kernel.

The binned sample-point estimator allows head-to-head comparisons between a
general sample-point estimator and the fixed bandwidth estimator or the balloon
estimator. In actuality, the binned sample-point estimator is not entirely general in
that the smoothing matrix is assumed to be constant for all data points in a particular
bin. However, through the optimization, the smoothing matrices are allowed to adapt
to both level and curvature, something that the square-root law cannot accomplish.

Scott and Sheather (1985) and Hall and Wand (1996) showed that binning can
inflate the bias. Sain and Scott (1996) showed that the binned sample-point esti-
mator needed enough bins to counteract this bias and give sufficient flexibility to
improve on the fixed bandwidth estimator. The same is true in the multivariate case.
In fact, Table 1 shows that more bins per dimension may be needed to achieve
that same gain. Table 1 is based on a multivariate standard normal density and
n=100. For the fixed bandwidth method, the MISE was computed using the expres-
sions derived by Worton (1989) and Marron and Wand (1992). The kernels for the
binned sample-point estimator were restricted to be spherically symmetric () for
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Table 2
MISE values for fixed, sample-point, and balloon estimators using a normal kernel and a N(0,1,). For
the sample-point estimator, m =9 when n =100 and m =15 when n= 1000

Estimator n=100 n=1000
Fixed 0.00431 0.00106
Sample-point He .7, 0.00306 0.000644
He ;s 0.00211 0.000450
Balloon 0.00252 0.000542

simplicity. An equally spaced mesh was laid down over the approximate support of
the density (assumed to be (—3,3) in each dimension for consistency).

What is clear from Table 1 is that considerable gain in terms of the MISE can
be achieved with a relatively small number of bins per dimension and restricting the
shape of the kernels. For d =1, using only five bins was actually worse than the
fixed bandwidth estimator. However, for d =3, using five bins per dimension (125
total bins) led to some gain over the fixed bandwidth estimator.

Using m =15 bins achieved a 44% gain in MISE for d =1 and a 33% gain for
d =3. This suggests that it may be necessary to use more bins per dimension or
use the more general smoothing matrices for each bin. In Table 2, MISE values are
also computed for the bivariate standard normal. However, a sample-point estimator
(m=29) is included that allows unrestricted smoothing matrices. A considerable gain
in terms of the MISE is realized as the restriction on the kernels is removed. The
restricted kernel sample-point estimator with m =9 and n =100 bins leads to a 29%
improvement in the MISE while the unrestricted smoothing matrices leads to a 51%
reduction in the MISE.

The binned sample-point estimator also allows a direct comparison with the balloon
estimator. In this case, the unrestricted sample-point estimator actually gives a slight
improvement over the balloon estimator. The error of the balloon estimator is domi-
nated by contributions from the mode as it is of higher order in the tails. This implies
that the sample-point estimator is doing a better job than the balloon estimator even
near the mode. The improvement offered by the sample-point estimator is not a small
sample curiosity as the improvement is also achieved for the more moderate sample
size of n=1000. However, for larger d, the results will change as the impact of the
tails (where the balloon estimator is of higher order) becomes more pronounced.

While varying the bandwidth can lead to improvements over the traditional bias-
variance trade-off, the real power of the sample-point estimator may lie in the abil-
ity to model more complex, multimodal distributions. Consider the normal mixture
density, f(x)=3) w;¢s,(x — p;), labeled “K” in Wand and Jones (1993). This is a
bivariate, trimodal density comprised of three normal components with parameters

W1:3/7, W2:3/7, W3:1/7,

t t
23 243
)ul:(_lao)l: Ho = <13 \3/>> 5 H3 = (19_\3/») 5
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Fig. 2. Contours of normal mixture distribution (left frame) and image plot of the optimal bandwidth
function (right frame) for the binned sample-point estimator (m =20). Lighter gray scale indicate
smaller bandwidths.

Table 3
MISE values for fixed and sample-point (m =20) estimators using a normal kernel and a trimodal
normal mixture. Sample size is n =100

Estimator MISE
Fixed He 0.00940
He s 0.00864
Sample-point He 7, 0.00561
He s 0.00330
352 337 352 352
337 732 |2 - 732 |2 - 732 |
5510 (i) 0 (55) 0 (i)

Contours of this mixture are shown in the left frame of Fig. 2. This density poses
problems for the fixed bandwidth kernel, even with unrestricted orientation because
the covariance structure of the entire density is not far from the identity. The modes,
however, have varying heights and different covariance structures.

Table 3 shows a comparison of the MISE for a fixed kernel estimator with a
smoothing matrix in #°; and a unrestrictive smoothing matrix in 3. The sample-
point estimator with m =20 bins per dimension is also considered for the two smooth-
ing matrix structures. The results for the two parameterizations of the fixed bandwidth
estimator are not terribly different with a slight improvement going to the unrestricted
smoothing matrix. However, allowing the kernels to vary can lead to significant re-
duction in the MISE. Even just allowing the size of the kernels to vary can give
significant gains with the restricted sample-point estimator giving a 35% reduction
in the MISE. An image plot of the optimal bandwidth function is shown in the right
frame of Fig. 2 where each square in the image plot represents a bin. The log of
the bandwidth is indicated through gray-scale with lighter shades indicating smaller
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bandwidths. It is clear from that the size of the kernels mirrors the shape of the
density. Also note that the kernels are not adapting simply based on heights alone.
Curvature is also taken into account as the kernels near the left mode (first compo-
nent of the mixture) are much smaller than those near the top right mode (second
component of the mixture) despite the similar heights of these modes. Finally, the
unrestricted sample-point estimator yields even more promising results and has a
MISE that is 62% smaller than the unrestricted fixed estimator.

5. Practical algorithms

The previous section shows that varying the bandwidth in some fashion can lead
to substantial theoretical gains. Designing a practical, databased algorithm to realize
these gains in practice is a difficult task. There are more issues to consider than in
the univariate case, not least of these is the parameterization of the kernel as well
estimating the bandwidth function.

For example, the balloon estimator is attractive for a variety of reasons. It has
tremendous potential when good pointwise estimates of the density in the tails are
required. However, the orientation of the balloon kernel leading to a higher-order
bias requires knowledge of the fourth-order derivatives. A pilot estimate could be
used to calibrate the kernels, as suggested by Terrell and Scott (1992), but estimating
fourth-order derivatives is generally perceived as harder than estimating the density
itself and the gains from adaptivity would likely be overwhelmed from the error in
estimating the derivatives.

For the sample-point estimator, there are currently no asymptotic approximations
to the MISE that would allow a plug-in style bandwidth selector. This is due in part
to the failure of the traditional asymptotic approximations to model the behavior
of the optimal bandwidth function (Sain and Scott, 1996). However, least-squares
cross-validation offers a method that is an unbiased estimate of the MISE and
does not rely on an asymptotic approximation. Sain and Scott (1996) shows cross-
validation to perform well in the univariate setting at estimating the optimal
bandwidth function. Hence, it will be used as a test case to illustrate some of the
difficulties that may be encountered.

Least-squares cross-validation, also referred to as unbiased cross-validation (UCV),
was introduced by Rudemo (1982) and Bowman (1984) and is an approximation of
the integrated squared error. On average, this criterion is equal to the MISE less a
constant; hence, the term unbiased cross-validation. In this setting, the UCV function
is given as

A 2 a
UCV=R(f) == [ i(x),
i=1

where

m

> npKuy(xi — t))

Jj=1

A

foixi)=

n—1
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Fig. 3. Scatterplot of log cholesterol and log triglyceride levels for » =320 males with heart disease.
The grid indicates the mesh used for the sample-point estimator. The data have been scaled to have
zero mean and unit variance in each dimension.

and

nt — I’lj—l if XiGBj,
Y n; otherwise.

Note that this is not a fully binned version of UCV because the actual data are
used in the estimation of the cross-product. As with the expression for the MISE,
the bin counts are computed and then the criterion minimized over the space of the
smoothing matrices, H;, j=1,...,m.

5.1. An example

As an illustration, consider the lipid data of Scott et al. (1978). These data consist
of measurements of cholesterol and triglycerides for 320 men diagnosed with coro-
nary artery disease. The original paper showed that the data were bimodal, indicating
an increased risk for heart disease associated with increased cholesterol level. Further
study of the data reveals the potential of a third mode. Fig. 3 shows a scatterplot of
the data with the mesh used to bin the data for the sample-point estimator shown
by the dotted lines. An 11 x 11 mesh was used; only the bins containing data are
indicated on the plot. Note that the data were scaled to have zero mean and unit
variance in each dimension.

Fig. 4 shows perspective and contour plots for a fixed bandwidth estimator using a
smoothing matrix in ;. The smoothing parameter was selected by cross-validation.
The estimate shows evidence of two distinct modes, while the third mode is marginal.
There is also a considerable amount of noise exhibited by spurious modes in the tails.

The bandwidths for the sample-point estimate with smoothing matrices restricted
to #, are shown in Fig. 5. The observed pattern is consistent with intuition, having
larger bandwidths in the tails and smaller near the modes. The estimate is shown
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Fig. 5. Estimated bandwidths for the restricted sample-point estimate.

in Fig. 6 and initially appears oversmoothed. However, the modes are actually more
pronounced (higher) and there are three clear modes in the adaptive estimate. There
is also little evidence of the spurious modes in the tails of the distribution. The
resulting estimator achieves the goals of the adaptive procedure, namely to correctly
emphasize features (both heights and positions of modes) while minimizing noise
and spurious modes.

Fig. 7 shows the sample-point estimate using unrestricted kernels (#’3) chosen by
UCV. Unfortunately, this estimate does not reflect the promise of the MISE results
in the previous section. The estimate is quite rough with many spurious modes. To
determine the cause, consider an examination of the estimated kernels. Those ker-
nels near the modes are shown in Fig. 8. Here, the source of the difficulties can be
found. Many of the kernels appear close to degenerate and most seem to have wildly
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Fig. 6. Perspective and contour plots of the sample-point estimate (1) for the lipid data.
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Fig. 7. Perspective and contour plots of the estimated density using a fully parameterized bandwidth
matrix (H3).

varying orientations. Fig. 9 shows that the optimal kernels in the tails are highly el-
liptical and, with the scarcity of data in the tails, makes estimation difficult. This
may be an artifact of the well-established aggressive behavior of cross-validation to
yield highly variable bandwidths that are often much smaller than optimal. Unfortu-
nately, there are just too many parameters to estimate, in this case 48 x 3 =144, for
such a moderate sample size. Clearly, attempting to estimate the fully parameterized
smoothing matrices will require much more data or a more stable procedure.

5.2. Two simulated examples
To explore the behavior of the sample-point estimator further, 100 samples of

size 500 were generated from two distributions, a skewed distribution labeled “C”
in Wand and Jones (1993) and constructed from a mixture of three normals with
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Fig. 8. Estimated kernels for fully parameterized bandwidth matrix. Kernels only shown for bins near
the primary modes.

parameters

W1:1/5, W2=1/5, W3:3/5,

i =(0,0), w=(1/2,1/2), wus=(13/12,13/12)’,

10 (37 0 (3 0

m=o 1] ==V Ge) 2= ]
and the trimodal mixture discussed previously. Both are good examples of densities
that are difficult to estimate. Roughly 13 bins were placed over the region (—4,4) x
(—4,4) for the sample-point estimator. Bandwidths for the product kernel estimator
(#,) were computed using cross-validation (Sain et al., 1994) and plug-in (Wand
and Jones, 1994).

The performance of the estimators was measured by a number of different cri-
teria. First, the integrated squared error (ISE) was computed for each replication.
Averages and standard deviations are shown in Table 4. For both densities, there are
not dramatic differences in terms of the integrated squared error. The sample-point
estimator holds a slight advantage for the skewed density while the fixed bandwidth
estimators are slightly better for the trimodal density. Interestingly, the sample-point
estimator has better consistency (less variability) than either of the fixed bandwidth
approaches.

At first it seems disconcerting that the sample-point estimator is not clearly superior
in practice, at least with respect to the squared error. Much of this is attributable to
cross-validation. The increased variability associated with procedure forces a smaller
number of bins than what is ideal. This keeps the variability of the estimated band-
widths down, but does not give quite enough flexibility to achieve the full benefit
of adaptivity. Other approaches to estimating optimal bandwidths are currently being
investigated.

While the ISE results are important, another view of performance of a density
estimator is how well the estimate recovers the true structure of the underlying
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Fig. 9. Simulation results for the skewed distribution. The first row is for the sample-point es-

timator and the second and third rows are for the product kernel estimator with bandwidths es-

timated by UCV and plug-in, respectively. The left column shows locations of sample modes,

the middle column shows the heights of the sample modes, and the right column shows
the number of sample modes.

Table 4
Average/standard deviation of ISEs for the simulated examples. Values are written x 1073

Distribution Sample-point ucv Plug-in
Skewed 4.11/1.24 4.73/1.61 4.13/1.49
Trimodal 4.28/0.796 3.94/1.08 3.75/0.879

density. Figs. 9 and 10 address this issue by focusing on how well the estimates
recover the primary modes of the density.

Scatterplots of the locations of the sample modes found in each replication are
shown in the first column of both figures. All of the estimates seem to find the correct
primary modes as evidence by the clear clusters near the true mode locations, but
the fixed bandwidth procedures have a substantial number of sample modes in the
tails. In fact, the last column in each plot (histograms of the number of modes in
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Fig. 10. Simulation results for the trimodal distribution.

each replication) shows that the fixed bandwidth procedures routinely give too many
modes leaving the analyst to wonder which sample modes are real and which are
spurious.

This phenomenon might lead one to conclude that the variable bandwidth pro-
cedure is simply oversmoothing. However, the middle column of plots shows his-
tograms of the heights of the modes found in the simulation study. For the skewed
distribution, the true height of the mode is 0.355. All of the estimators are biased
downward (as expected), although the sample-point estimator has far less bias. For
the trimodal distribution, the heights are 0.054, 0.162 and 0.203. The sample-point
estimator does a much better job of distinguishing the difference in heights between
the two primary peaks.

5.3. Another approach

Optimization over a large number of bins can be difficult. One way to reduce
the dimensionality of the problem is based on the notion that the fixed bandwidth
procedure is adequate for unimodal distributions. Hence, a pilot estimate could be
used to calibrate the bandwidth function, using the same bandwidth for each data
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Fig. 11. Left plot: modes and partitions for calibrating the smoothing matrix. Right plot: estimated
bandwidths based on the partitions.
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Fig. 12. Perspective and contour plots of the estimated density using the bandwidth function calibrated
by the pilot estimate.

point near a sample mode. An example is shown in Fig. 11. Here the fixed bandwidth
estimate from Fig. 4 is used to partition the data. There are 16 sample modes in the
estimate. Each data point is assigned to the nearest mode and each mode is assigned
a separate smoothing parameter. This has the effect of defining a piecewise constant
bandwidth function. Only now the mesh is not equally spaced.

Fig. 11 shows the estimated bandwidths using the restricted smoothing matrices
(#1). The behavior is as expected with smaller bandwidths near dominant modes
and larger bandwidths out in the tails. The estimate using these bandwidths is plot-
ted in Fig. 12 and it shows the two modes clearly and the third mode is apparent.
Most of the variability in the tails is also diminished. While not as good as the
sample-point estimate shown in Fig. 6, this estimate is still an improvement over
the fixed bandwidth estimate, particularly in the tails where the number of spurious
modes is reduced. Estimates using more general parameterizations of the smoothing
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matrices (not shown) suffer from the same problems as the estimates in Figs. 6 and 8§,
although not to the same degree, as data are sparse in some of the bins. One interpre-
tation of these result is that improvement can be gained even with a more restrictive
bandwidth function that puts the adaptivity where it may be needed the most, that
is out in the tails.

6. Conclusions

There are two primary conclusions to be made from this work. First, locally adap-
tive density estimators that allow smoothing to vary in some fashion can lead to
substantial gains over fixed bandwidths for low to moderate dimensional density
estimation. The results are even more promising when the underlying density is
complex, exhibiting multiple modes with differences in scale and orientation.

Second, it is possible to achieve gains in practice, but it is not necessarily easy,
and overparameterizing the smoothing matrices is a concern. In the fixed bandwidth
case, theory suggests that kernel density estimators using smoothing matrices in 3
are generally superior to other parameterizations. However, in practice, difficulties in
estimating the full smoothing matrix lead practitioners to use kernels in . In the
variable bandwidth case, a similar finding arises from this work. Fully parameter-
ized smoothing matrices are theoretically superior, but they are difficult to estimate.
In practice, a variable bandwidth estimator using smoothing matrices in #; gives
sufficient flexibility to model complex densities while still improving upon fixed
bandwidth estimators.

More work is required in understanding the complex theory behind locally adaptive
methods and their connections to mixture models. Inspired by the desire to paramet-
rically model data that appears to be generated from several subpopulations, mixture
models have the surprising ability to model distributions whose components are not
necessarily in the parametric family of the components of the mixture (see Sain
et al. (1999) for an example in practice, among others). There is other work that
is also exploring the connection between kernels and mixtures, for example Priebe
(1994) and Marchette et al. (1996).

Additionally, more work is needed in building practical algorithms. Least-squares
cross-validation holds a lot of promise, but it certainly has problems as well. Recog-
nizing that the binned kernel estimator is similar to a mixture model with prespecified
means and mixing parameters, the expectation-maximization (EM) algorithm is an
interesting alternative to cross-validation and should be studied further (see McLach-
lan and Peel (2000) for an overview of the EM for mixtures). However, while con-
strained versions of the EM algorithm exist, it is generally not immune to some of
the problems with degenerate and non-singular covariance matrices mentioned here.

This research is blurring the lines between parametric and nonparametric density
estimation. What has been proposed here is certainly inspired by kernel estimators
and motivated by a desire to learn more about variable bandwidth kernel estimators
and applications in higher dimensions. Kernel estimators already possess a great flexi-
bility, and locally adaptive kernel estimators add significantly to an already rich class.
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Finally, much of the work done here required some sort of numerical optimization.
Most of this optimization was done in S-Plus using the function nlminb (Statistical
Sciences, 1995) which is based on subroutines from the PORT Mathematical Subrou-
tine Library (AT& T Bell Laboratories, 1984). In some cases the gradient was also
computed and used in the optimization which dramatically improved performance.
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