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Preface

The concept of smoothing is a central idea in statistics. Its role is to extract
structural elements of variable complexity from patterns of random varia-
tion. The nonparametric smoothing concept is designed to simultaneously
estimate and model the underlying structure. This involves high dimen-
sional objects, like density functions, regression surfaces or conditional quan-
tiles. Such objects are difficult to estimate for data sets with mixed, high di-
mensional and partially unobservable variables. The semiparametric model-
ing technique compromises the two aims, flexibility and simplicity of statis-
tical procedures, by introducing partial parametric components. These (low
dimensional) components allow one to match structural conditions like for
example linearity in some variables and may be used to model the influence
of discrete variables. The flexibility of semiparametric modeling has made it
a widely accepted statistical technique.

The aim of this monograph is to present the statistical and mathematical
principles of smoothing with a focus on applicable techniques. The necessary
mathematical treatment is easily understandable and a wide variety of inter-
active smoothing examples are given. This text is an e-book; it is a download-
able entity (http://www.i-xplore.de) which allows the reader to recalculate
all arguments and applications without reference to a specific software plat-
form. This new technique for proliferation of methods and ideas is specifi-
cally designed for the beginner in nonparametric and semiparametric statis-
tics. It is based on the XploRe quantlet technology, developed at Humboldt-
Universitét zu Berlin.

The text has evolved out of the courses “Nonparametric Modeling” and
“Semiparametric Modeling”, that the authors taught at Humboldt-Universi-
tat zu Berlin, ENSAE Paris, Charles University Prague, and Universidad de
Cantabria, Santander. The book divides itself naturally into two parts:


http://www.i-xplore.de
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e Part I: Nonparametric Models
histogram, kernel density estimation, nonparametric regression

e Part ??: Semiparametric Models
generalized regression, single index models, generalized partial linear
models, additive and generalized additive models.

The first part (Chapters 2—4) covers the methodological aspects of non-
parametric function estimation for cross-sectional data, in particular kernel
smoothing methods. Although our primary focus will be on flexible regres-
sion models, a closely related topic to consider is nonparametric density esti-
mation. Since many techniques and concepts for the estimation of probability
density functions are also relevant for regression function estimation, we first
consider histograms (Chapter 2) and kernel density estimates (Chapter 3) in
more detail. Finally, in Chapter 4 we introduce several methods of nonpara-
metrically estimating regression functions. The main part of this chapter is
devoted to kernel regression, but other approaches such as splines, orthogo-
nal series and nearest neighbor methods are also covered.

The first part is intended for undergraduate students majoring in math-
ematics, statistics, econometrics or biometrics. It is assumed that the audi-
ence has a basic knowledge of mathematics (linear algebra and analysis) and
statistics (inference and regression analysis). The material is easy to utilize
since the e-book character of the text allows maximum flexibility in learning
(and teaching) intensity.

The second part (Chapters 5-9) is devoted to semiparametric regression
models, in particular extensions of the parametric generalized linear model.
In Chapter 5 we summarize the main ideas of the generalized linear model
(GLM). Typical concepts are the logit and probit models. Nonparametric ex-
tensions of the GLM consider either the link function (single index models,
Chapter 6) or the index argument (generalized partial linear models, addi-
tive and generalized additive models, Chapters 7-9). Single index models
focus on the nonparametric error distribution in an underlying latent vari-
able model. Partial linear models take the pragmatic point of fixing the error
distribution but let the index be of non- or semiparametric structure. General-
ized additive models concentrate on a (lower dimensional) additive structure
of the index with fixed link function. This model class balances the difficulty
of high-dimensional smoothing with the flexibility of nonparametrics.

In addition to the methodological aspects, the second part also covers
computational algorithms for the considered models. As in the first part we
focus on cross-sectional data. It is intended to be used by Master and PhD
students or researchers.

This book would not have been possible without substantial support
from many colleagues and students. It has benefited at several stages from
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useful remarks and suggestions of our students at Humboldt-Universitat
zu Berlin, ENSAE Paris and Charles University Prague. We are grateful to
Lorens Helmchen, Stephanie Freese, Danilo Mercurio, Thomas Kiihn, Ying
Chen and Michal Benko for their support in text processing and program-
ming, Caroline Condron for language checking and Pavel Cizek, Zdenék
Hlavka and Rainer Schulz for their assistance in teaching. We are indebted to
Joel Horowitz (Northwestern University), Enno Mammen (Universitdt Hei-
delberg) and Helmut Rieder (Universitdt Bayreuth) for their valuable com-
ments on earlier versions of the manuscript. Thanks go also to Clemens
Heine, Springer Verlag, for being a very supportive and helpful editor.

Berlin/Kaiserslautern/Madrid, February 2004

Wolfgang Hérdle
Marlene Miiller
Stefan Sperlich
Axel Werwatz
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cdf cumulative distribution function

df degrees of freedom

iff if and only if

iid. independent and identically distributed
w.r.t. with respect to
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MISE
ML
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MSE
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SIM
SLS
UusSDh
WADE
WSLS

generalized partial linear model
integrated squared error

iteratively reweighted least squares
likelihood ratio

least squares

mean averaged squared error

mean integrated squared error
maximum likelihood

maximum likelihood estimator
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partial linear model

pseudo maximum likelihood estimator
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US Dollar
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Scalars, Vectors and Matrices

X,Y
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Matrix algebra

tr(A)
diag(A)
det(A)
rank(A)

Notation

binwidth or bandwidth

auxiliary bandwidth in marginal integration
bandwidth matrix

identity matrix

data or design matrix

vector of observations Y7,..., Y,

parameter

parameter vector

first unit vector, i.e. g = (1,0,..., 0)T

(j + 1)th unit vector, i.e. ¢; = (0,...,0,1,0,.. L0
j
vector of ones of length n

vector of expectations of Y7, ..., Y} in generalized
models

vector of index values X{ B, ..., X, B in generalized
models

likelihood ratio test statistic
vector of variables (linear part of the model)

vector of continuous variables (nonparametric part of the
model)

random vector of all but ath component

random vector of all but ath and jth component

smoother matrices
vector of regression values m(X1), ..., m(Xy)

vector of additive component function values

Sa(X1), -, 8a(Xn)

trace of matrix A
diagonal of matrix A
determinant matrix A

rank of matrix A
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XXIV  Notation

Al inverse of matrix A

(o] norm of vector u, i.e. Vu'u

Functions

log logarithm (base ¢)

) pdf of standard normal distribution

4 cdf of standard normal distribution

I indicator function, i.e. I(A) = 1 if A holds, 0 otherwise
K kernel function (univariate)

Kj, scaled kernel function, i.e. Ky, (u) = K(u/h)/h

K kernel function (multivariate)

Ku scaled kernel function, i.e. Ky () = K(H ')/ det(H)
u2(K) second moment of K, i.e. [ u?K(u)du

tp(K) pth moment of K, i.e. [ uPK(u)du

K3 squared Ly norm of K, i.e. [{K(u)}?du

f probability density function (pdf)

fx pdf of X

flx,y) joint density of X and Y

Vi gradient vector (partial first derivatives)

Hy Hessian matrix (partial second derivatives)

KxK convolution of K, i.e. K« K(u) = [ K(u — v)K(v) dv
w, W weight functions

m unknown function (to be estimated)

m) vth derivative (to be estimated)

4,0 log-likelihood, individual log-likelihood

G known link function

g unknown link function (to be estimated)

a,b,c exponential family characteristics in generalized models
Vv variance function of Y in generalized models

Qu additive component (to be estimated)
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vth derivative (to be estimated)

pdf of X,

mean value of X

variance of X, i.e. Var(X) = E(X — EX)?

conditional mean Y given X (random variable)
conditional mean Y given X = x (realization of E(Y|X))
same as E(Y|X = x)

conditional variance of Y given X = x (realization of
Var(Y|X))

mean of g(Xj, Xp) w.r.t. X; only

conditional median Y given X (random variable)

same as E(Y|X) in generalized models

variance function of Y in generalized models

nuisance (dispersion) parameter in generalized models
MSE at the point x

conditional expectation function E(e|Xy)

uniform distribution on [0, 1]

uniform distribution on |4, b]

standard normal or Gaussian distribution
normal distribution with mean y and variance o

multi-dimensional normal distribution with mean y and
covariance matrix X

x? distribution with m degrees of freedom

t-distribution with m degrees of freedom



XXVI Notation

Estimates

D ™ ™)

Q

Other

estimated coefficient
estimated coefficient vector
estimated density function

estimated density function when leaving out observa-
tion
estimated regression function

estimated regression function using local polynomials of
degree p and bandwidth h

estimated multivariate regression function using local
polynomials of degree p and bandwidth matrix H

a=o(b)iffa/b —0asn —ocorh —0
a=0(b)iffa/b — constantasn — coorh — 0
U = oy(V)iff foralle > 0 holds P(|U/V| >€) — 0

U = Oy(V) iff for all € > 0 exists ¢ > 0 such that
P(JU/V| > ¢) < € as n is sufficiently large or h is suf-
ficiently small

almost sure convergence
convergence in probability

convergence in distribution
asymptotically equal

asymptotically proportional

natural numbers
integers

real numbers



d-dimensional real space
proportional

constantly equal

number of elements of a set
jthbin, ie. [xg+ (j — 1)k, xo + jh)

bin center of B}, i.e. m; = xo + (j — %)h

Notation XXVII






1

Introduction

1.1 Density Estimation

Consider a continuous random variable and its probability density function
(pdf). The pdf tells you “how the random variable is distributed”. From the
pdf you cannot only calculate the statistical characteristics as mean and vari-
ance, but also the probability that this variable will take on values in a certain
interval.

The pdf is, thus, very useful as it characterizes completely the “behav-
ior” of a random variable. This fact might provide enough motivation to
study nonparametric density estimation. Moreover nonparametric density
estimates can serve as a building block in nonparametric regression estima-
tion, as regression functions are fully characterized through the distribution
of two (or more) variables.

The following example, which uses data from the Family Expenditure
Survey of each year from 1969 to 1983, gives some illustration of the fact that
density estimation has a substantial application in its own right.

Example 1.1.

Imagine that we have to answer the following questions: Is there a change
in the structure of the income distribution during the period from 1969 to
1983? (You may recall, that many people argued that the neo-liberal policies
of former Prime Minister Margaret Thatcher promoted income inequality in
the early 1980s.)

To answer this question, we have estimated the distribution of net-income
for each year from 1969 to 1983 both parametrically and nonparametrically.
In parametric estimation of the distribution of income we have followed
standard practice by fitting a log-normal distribution to the data. We em-
ployed the method of kernel density estimation (a generalization of the fa-
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miliar histogram, as we will soon see) to estimate the income distribution
nonparametrically. In the upper graph in Figure 1.1 we have plotted the es-
timated log-normal densities for each of the 15 years: Note that they are all
very similar. On the other hand the analogous plot of the kernel density esti-
mates show a movement of the net-income mode (the maximum of the den-

Lognormal Density Estimates

NN
TN
NN

Figure 1.1. Log-normal density estimates (upper graph) versus kernel density es-
timates (lower graph) of net-income, U.K. Family Expenditure Survey 1969-83
Q SPMfesdensities
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sity) to the left (Figure 1.1, lower graph). This indicates that the net-income
distribution has in fact changed during this 15 year period. O

1.2 Regression

Let us now consider a typical linear regression problem. We assume that
anyone of you has been exposed to the linear regression model where the
mean of a dependent variable Y is related to a set of explanatory variables
X1, X3,...,X; in the following way:

E(Y|X) = X181+ ...+ X4B8: = X' B. (1.1)

Here E(Y|X) denotes the expectation conditional on the vector X = (X1, X5,
een, Xd)T and ﬁj, j =1,2,...,d are unknown coefficients. Defining ¢ as the
deviation of Y from the conditional mean E(Y|X):

e=Y—E(Y|X) (1.2)

we can write
Y=X"B+e (1.3)

Example 1.2.

To take a specific example, let Y be log wages and consider the explanatory
variables schooling (measured in years), labor market experience (measured as
AGE — SCHOOL — 6) and experience squared. If we assume that, on average,
log wages are linearly related to these explanatory variables then the linear
regression model applies:

E(Y|SCHOOL, EXP) = Bg + B1- SCHOOL + B,- EXP + B3- EXP2.  (1.4)
Note that we have included an intercept (8p) in the model. O

The model of equation (1.4) has played an important role in empirical la-
bor economics and is often called human capital earnings equation (or Mincer
earnings equation to honor Jacob Mincer, a pioneer of this line of research).
From the perspective of this course, an important characteristic of equation
(1.4) is its parametric form: the shape of the regression function is governed
by the unknown parameters /3]-, j=1,2,...,d. That is, all we have to do in
order to determine the linear regression function (1.4) is to estimate the un-
known parameters ;. On the other hand, the parametric regression function
of equation (1.4) a priori rules out many conceivable nonlinear relationships
between Y and X.
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Let m(SCHOOL, EXP) be the true, unknown regression function of log
wages on schooling and experience. That is,

E(Y|SCHOOL, EXP) = m(SCHOOL, EXP). (1.5)

Suppose that you were assigned the following task: estimate the regression of
log wages on schooling and experience as accurately as possible in one trial.
That is, you are not allowed to change your model if you find that the initial
specification does not fit the data well. Of course, you could just go ahead
and assume, as we have done above, that the regression you are supposed to
estimate has the form specified in (1.4). That is, you assume that

m(SCHOOL, EXP) = B + B,- SCHOOL + B3- EXP + B4- EXP?,

and estimate the unknown parameters by the method of ordinary least
squares, for example. But maybe you would not fit this parametric model
if we told you that there are ways of estimating the regression function with-
out having to make any prior assumptions about its functional form (except
that it is a smooth function). Remember that you have just one trial and if
the form of m(SCHOOL, EXP) is very different from (1.4) then estimating the
parametric model may give you very inaccurate results.

It turns out that there are indeed ways of estimating m(e) that merely as-
sume that m(e) is a smooth function. These methods are called nonparametric
regression estimators and part of this course will be devoted to studying
nonparametric regression.

Nonparametric regression estimators are very flexible but their statisti-
cal precision decreases greatly if we include several explanatory variables
in the model. The latter caveat has been appropriately termed the curse of
dimensionality. Consequently, researchers have tried to develop models and
estimators which offer more flexibility than standard parametric regression
but overcome the curse of dimensionality by employing some form of di-
mension reduction. Such methods usually combine features of parametric and
nonparametric techniques. As a consequence, they are usually referred to as
semiparametric methods. Further advantages of semiparametric methods are
the possible inclusion of categorical variables (which can often only be in-
cluded in a parametric way), an easy (economic) interpretation of the results,
and the possibility of a part specification of a model.

In the following three sections we use the earnings equation and other ex-
amples to illustrate the distinctions between parametric, nonparametric and
semiparametric regression and we certainly hope that this will whet your
appetite for the material covered in this course.



1.2 Regression 5

1.2.1 Parametric Regression

Versions of the human capital earnings equation of (1.4) have probably been
estimated by more researchers than any other model of empirical economics.
For a detailed nontechnical and well-written discussion see Berndt (1991,
Chapter 5). Here, we want to point out that:

e Under certain simplifying assumptions, 8, accurately measures the rate
of return to schooling.

e THuman capital theory suggests a concave wage-experience profile: rapid
human capital accumulation in the early stage of one’s labor market ca-
reer, with rising wages that peak somewhere during midlife and decline
thereafter as hours worked and the incentive to invest in human capi-
tal decrease. This is the reason for including both EXP and EXP? in the
model. In order to get a profile as the one envisaged by theory, the esti-
mated value of B3 should be positive and that of 4 should be negative.

Table 1.1. Results from OLS estimation for Example 1.2

Dependent Variable: Log Wages
Variable  Coefficients S.E. t-values

SCHOOL 0.0898 0.0083  10.788
EXP 0.0349 0.0056 6.185
EXP? -0.0005 0.0001 —4.307
constant 0.5202 0.1236 4.209

RZ=0.4, sample size n = 534

We have estimated the coefficients of (1.4) using ordinary least squares
(OLS), using a subsample of the 1985 Current Population Survey (CPS) pro-
vided by Berndt (1991). The results are given in Table 1.1.

The estimated rate of return to schooling is roughly 9%. Note that the
estimated coefficients of EXP and EXP? have the signs predicted by hu-
man capital theory. The shape of the wage-schooling (a plot of SCHOOL
vs. 0.0898- SCHOOL) and wage-experience (a plot of EXP vs. 0.0349- EXP —
0.0005- EXPZ) profiles are given in the left and right graphs of Figure 1.2, re-
spectively.

The estimated wage-schooling relation is linear “by default” since we did
not include SCHOOL?, say, to allow for some kind of curvature within the
parametric framework. By looking at Figure 1.2 it is clear that the estimated
coefficients of EXP and EXP? imply the kind of concave wage-earnings pro-
file predicted by human capital theory.
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We have also plotted a graph (Figure 1.3) of the estimated regression
surface, i.e. a plot that has the values of the estimated regression function
(obtained by evaluating 0.0898- SCHOOL + 0.0349- EXP — 0.0005- EXP? at the
observed combinations of schooling and experience) on the vertical axis and
schooling and experience on the horizontal axes.

Wage <-- Schooling Wage <-- Experience

05

04

03

02

05

0,1

Figure 1.2. Wage-schooling and wage-experience profile @ SPMcps851in

Wage <-- Schooling, Experience

41.2

Experience

10.0
6.0

Schooling

Figure 1.3. Parametrically estimated regression function '@ SPMcps851in
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All of the element curves of the surface appear similar to Figure 1.2 (right)
in the direction of experience and like Figure 1.2 (left) in the direction of
schooling. To gain a better understanding of the three-dimensional picture
we have plotted a single wage-experience profile in three dimensions, fixing
schooling at 12 years. Hence, Figure 1.3 highlights the wage-earnings profile
for high school graduates.

1.2.2 Nonparametric Regression

Suppose that we want to estimate
E(Y|SCHOOL, EXP) = m(SCHOOL, EXP). (1.6)

and we are only willing to assume that m(e) is a smooth function. Non-
parametric regression estimators produce an estimate of m(e) at an arbitrary
point (SCHOOL = 5, EXP = e) by locally weighted averaging over log wages
(here s and e denote two arbitrary values that SCHOOL and EXP may take
on, such as 12 and 15). Locally weighting means that those values of log
wages will be higher weighted for which the corresponding observations of
EXP and SCHOOL are close to the point (s, ). Let us illustrate this principle
with an example. Let s = 8 and e = 7 and suppose you can use the four
observations given in Table 1.2 to estimate m(8,7):

Table 1.2. Example observations

Observation log(WAGES) SCHOOL EXP

1 7.31 8 8
2 7.6 16 1
3 74 8 6
4 7.8 12 2

In nonparametric regression m(8,7) is estimated by averaging over the
observed values of the dependent variable log wage. But not all values will
be given the same weight. In our example, observation 1 will get the most
weight since it has values of schooling and experience that are very close to
the point where we want to estimate. This makes a lot of sense: if we want
to estimate mean log wages for individuals with 8 years of schooling and 7
years of experience then the observed log wage of a person with 8 years of
schooling and 8 years of experience seems to be much more informative than
the observed log wage of a person with 12 years of schooling and 2 years of
experience.
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Wage <-- Schooling, Experience

2.4

2.0

41.2

Experience 27.5

10.0
6.0

Schooling

Figure 1.4. Nonparametrically estimated regression function @ SPMcps85reg

Consequently, any reasonable weighting scheme will give more weight to
7.31 than to 7.8 when we average over observed log wages. The exact method
of weighting is determined by a weight function that makes precise the idea
of weighting nearby observations more heavily. In fact, the weight function
might be such that observations that are too far away get zero weight. In our
example, observation 2 has values of experience and schooling that are so
far away from 8 years of schooling and 7 years of experience that a weight
function might assign zero value to the corresponding value of log wages
(7.6). It is in this sense that the averaging is local. In Figure 1.4, the surface
of nonparametrically estimated values of m(e) are shown. Here, a so-called
kernel estimator has been used.

As long as we are dealing with only one regressor, the results of esti-
mating a regression function nonparametrically can easily be displayed in a
graph. The following example illustrates this. It relates net-income data, as
we considered in Example 1.1, to a second variable that measures household
expenditure.

Example 1.3.

Consider for instance the dependence of food expenditure on net-income.
Figure 1.5 shows the so-called Engel curve (after the German Economist En-
gel) of net-income and food share estimated using data from the 1973 Family
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Expenditure Survey of roughly 7000 British households. The figure supports
the theory of Engel who postulated in 1857:

... je drmer eine Familie ist, einen desto grofieren Antheil von der
Gesammtausgabe muf$ zur Beschaffung der Nahrung aufgewendet
werden ... (The poorer a family, the bigger the share of total expendi-

ture that has to be used for food.) O
Engel Curve

© | L
(=]

e :

s 9
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(=}
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0 0.5 1 1.5 2 25 3
Net-income

Figure 1.5. Engel curve, U.K. Family Expenditure Survey 1973 '@ SPMengelcurve2

1.2.3 Semiparametric Regression

To illustrate semiparametric regression let us return to the human capital
earnings function of Example 1.2. Suppose the regression function of log
wages on schooling and experience has the following shape:

E(Y|SCHOOL, EXP) = & + g1 (SCHOOL) + g»(EXP). 1.7)

Here g1(e) and g»(e) are two unknown, smooth functions and « is an un-
known parameter. Note that this model combines the simple additive struc-
ture of the parametric regression model (referred to hereafter as the additive
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model) with the flexibility of the nonparametric approach. This is done by not
imposing any strong shape restrictions on the functions that determine how
schooling and experience influence the mean regression of log wages. The
procedure employed to estimate this model will be explained in greater de-
tail later in this course. It should be clear, however, that in order to estimate
the unknown functions g1 (e) and g»(e) nonparametric regression estimators
have to be employed. That is, when estimating semiparametric models we
usually have to use nonparametric techniques. Hence, we will have to spend
a substantial amount of time studying nonparametric estimation if we want
to understand how to estimate semiparametric models. For now, we want to
focus on the results and compare them with the parametric fit.

Wage <-- Schooling Wage <-- Experience

02

02

05

04

Figure 1.6. Additive model fit vs. parametric fit, wage-schooling (left) and wage-
experience (right) @ SPMcps85add

In Figure 1.6 the parametrically estimated wage-schooling and wage-ex-
perience profiles are shown as thin lines whereas the estimates of g7 (e) and
g2 (e) are displayed as thick lines with bullets. The parametrically estimated
wage-school and wage-experience profiles show a good deal of similarity
with the estimate of g1(e) and g»(e), except for the shape of the curve at ex-
tremal values. The good agreement between parametric estimates and addi-
tive model fit is also visible from the plot of the estimated regression surface,
which is shown in Figure 1.7.

Hence, we may conclude that in this specific example the parametric
model is supported by the more flexible nonparametric and semiparamet-
ric methods. This potential usefulness of nonparametric and semiparamet-
ric techniques for checking the adequacy of parametric models will be illus-
trated in several other instances in the latter part of this course.
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Wage <-- Schooling, Experience

0.4

0.1

41.2

X
-0.1 X
Experience 27.5 *;e

Schooling

Figure 1.7. Surface plot for the additive model ‘@ SPMcps85add

Take a closer look at (1.6) and (1.7). Observe that in (1.6) we have to es-
timate one unknown function of two variables whereas in (1.7) we have to
estimate two unknown functions, each a function of one variable. It is in this
sense that we have reduced the dimensionality of the estimation problem.
Whereas all researchers might agree that additive models like the one in (1.7)
are achieving a dimension reduction over completely nonparametric regres-
sion, they may not agree to call (1.7) a semiparametric model, as there are no
parameters to estimate (except for the intercept parameter «). In the follow-
ing example we confront a standard parametric model with a more flexible
model that, as you will see, truly deserves to be called semiparametric.

Example 1.4.

In the earnings-function example, the dependent variable log wages can
principally take on any positive value, i.e. the set of values Y is infinite. This
may not always be the case. For example, consider the decision of an East-
German resident to move to Western Germany and denote the decision vari-
able by Y. In this case, the dependent variable can take on only two values,

y — 1 if the person can imagine moving to the west,
~ |0 otherwise.

We will refer to this as a binary response later on. g
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In Example 1.2 we tried to estimate the effect of a person’s education and
work experience on the log wage earned. Now, say we want to find out how
these two variables affect the decision of an East German resident to move
west, i.e. we want to know E(Y|x) where x is a (d x 1) vector containing all
d variables considered to be influential to the migration decision. Since Y is
a binary variable (i.e. a Bernoulli distributed variable), we have that

E(Y|X) = P(Y = 1|X). (1.8)

Thus, the regression of Y on X can be expressed as the probability that a
randomly sampled person from the East will migrate to the West, given this
person’s characteristics collected in the vector X. Standard models for P(Y =
1|X) assume that this probability depends on X as follows:

P(Y =1]X) = G(X'B), (1.9)

where X B is a linear combination of all components of X. It aggregates
the multiple characteristics of a person into one number (therefore called the
index function or simply the index), where B is an unknown vector of coeffi-
cients. G(e) denotes any continuous function that maps the real line to the
range of [0, 1]. G(e) is also called the link function, since it links the index X ' B
to the conditional expectation E(Y|X).

In the context of this lecture, the crucial question is precisely what para-
metric form these two functions take or, more generally, whether they will
take any parametric form at all. For now we want to compare two models:
one that assumes that G(e) is of a known parametric form and one that al-
lows G(e) to be an unknown smooth function.

One of the most widely used fully parametric models applied to the case
of binary dependent variables is the logit model. The logit model assumes that
G(X " B) is the (standard) logistic cumulative distribution function (cdf) for
all X. Hence, in this case

1

E(Y|X) =P(Y =1|X) = pomvan-r %

(1.10)
Example 1.5.

In using a logit model, Burda (1993) estimated the effect of various explana-
tory variables on the migration decision of East German residents. The data
for fitting this model were drawn from a panel study of approximately 4,000
East German households in spring 1991. We use a subsample of n = 402 ob-
servations from the German state “Mecklenburg-Vorpommern” here. Due to
space constraints, we merely report the estimated coefficients of three com-
ponents of the index X ' B, as we will refer to these estimates below:

Bo + B1-INC + B2 AGE
= —2.2905 + 0.0004971- INC — 0.45499- AGE (1.11)
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INC and AGE are used to abbreviate the household income and age of the
individual. O

Figure 1.8 gives a graphical presentation of the results. Each observation
is represented by a “+”. As mentioned above, the characteristics of each per-
son are transformed into an index (to be read off the horizontal axis) while
the dependent variable takes on one of two values, Y = 0 or Y = 1 (to be read
off the vertical axis). The curve plots estimates of P(Y = 1|X), the probabil-
ity of Y = 1 as a function of X' B. Note that the estimates of P(Y = 1|X), by
assumption, are simply points on the cdf of a standard logistic distribution.

Logit Model

e W — N—
— T T

Link Function, Responses
05
T
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e . e B N R
3 -2 -1 0 1 2
Index

Figure 1.8. Logit fit @ SPMlogit

We shall continue with Example 1.4 below, but let us pause for a mo-
ment to consider the following substantial problem: the logit model, like
other parametric models, is based on rather strong functional form (linear
index) and distributional assumptions, neither of which are usually justified
by economic theory.

The first question to ask before developing alternatives to standard mod-
els like the logit model is: what are the consequences of estimating a logit
model if one or several of these assumptions are violated? Note that this is a
crucial question: if our parametric estimates are largely unaffected by model
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violations, then there is no need to develop and apply semiparametric mod-
els and estimators. Why would anyone put time and effort into a project that
promises little return?

One can employ the tools of asymptotic statistical theory to show that vio-
lating the assumptions of the logit model leads parameter estimates to being
inconsistent. That is, if the sample size goes to infinity, the logit maximum-
likelihood estimator (logit-MLE) does not converge to the true parameter
value in probability. While it doesn’t converge to the true parameter value
it does, however, converge to some other value. If this “false” value is close
enough to the true parameter value then we may not care very much about
this inconsistency:.

Consistency is an asymptotic criterion for the performance of an estima-
tor. That is, it looks at the properties of the estimator if the sample size grows
without limits. Yet, in practice, we are dealing with finite samples. Unfortu-
nately, the finite-sample properties of the logit maximume-likelihood estima-
tor can not be derived analytically. Hence, we have to rely on simulations to
collect evidence of its small-sample performance in the presence of misspec-
ification. We conducted a small simulation in the context of Example 1.4 to
which we now return.

True versus Logit Link

G(Index)
0.5

Index

Figure 1.9. Link function of the homoscedastic logit model (thin line) versus the link
function of the heteroscedastic model (solid line) @ SPMtruelogit
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Example 1.6.

Following Horowitz (1993) we generated data according to a heteroscedastic
model with two explanatory variables, INC and AGE. Here we considered
heteroscedasticity of the form

Var(e| X = x) = i {1 + (xT,B)z}2 - Var(J),

where ( has a (standard) logistic distribution. To give you an impression of
how dramatically the true heteroscedastic model differs from the supposed
homoscedastic logit model, we plotted the link functions of the two models
as shown in Figure 1.9. O

To add a sense of realism to the simulation, we set the coefficients of these
variables equal to the estimates reported in (1.11). Note that the standard
logit model introduced above does not allow for heteroscedasticity. Hence, if
we apply the standard logit maximum-likelihood estimator to the simulated
data, we are estimating under misspecification. We performed 250 replica-
tions of this estimation experiment, using the full data set with 402 observa-
tions each time. As the estimated coefficients are only identified up to scale,
we compared the ratio of the true coefficients, Sinc/Bace, to the ratio of
their estimated logit-MLE counterparts, BINC / E Ace- Figure 1.10 shows the
sampling distribution of the logit-MLE coefficients, along with the true value
(vertical line).

As we have subtracted the true value from each estimated ratio and di-
vided this difference by the true ratio’s absolute value, the true ratio is stan-
dardized to zero and differences on the horizontal axis can be interpreted as
percentage deviations from the truth. In Figure 1.10, the sampling distribu-
tion of the estimated ratios is centered around —0.11 which is the percentage
deviation from the truth of 11%. Hence, the logit-MLE underestimates the
true value.

Now that we have seen how serious the consequences of model misspeci-
fication can be, we might want to learn about semiparametric estimators that
have desirable properties under more general assumptions than their para-
metric counterparts. One way to generalize the logit model is the so-called
single index model (SIM) which keeps the linear form of the index X ' 8 but
allows the function G(e) in (1.9) to be an arbitrary smooth function g(e) (not
necessarily a distribution function) that has to be estimated from the data:

E(Y|X) =g(X'B), (1.12)
Estimation of the single index model (1.12) proceeds in two steps:

o Firstly, the coefficient vector B has to be estimated. Methods to calculate
the coefficients for discrete and continuous variables will be covered in
depth later.
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True Ratio vs. Sampling Distribution

Sampling Distribution
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Figure 1.10. Sampling distribution of the ratio of the estimated coefficients (density
estimate and mean value indicated as *) and the ratio’s true value (vertical line)
Q SPMsimulogit

e Secondly, we have to estimate the unknown link function g(e) by non-
parametrically regressing the dependent variable Y on the fitted index
X B where B is the coefficient vector we estimated in the first step. To
do this, we use again a nonparametric estimator, the kernel estimator we
mentioned briefly above.

Example 1.7.

Let us consider what happens if we use B from the logit fit and estimate
the link function nonparametrically. Figure 1.11 shows this estimated link
function. As before, the position of a + sign represents at the same time the
values of X' Band Y of a particular observation, while the curve depicts the
estimated link function. O

One additional remark should be made here: As you will soon learn, the
shape of the estimated link function (the curve) varies with the so-called
bandwidth, a parameter central in nonparametric function estimation. Thus,
there is no unique estimate of the link function, and it is a crucial (and diffi-
cult) problem of nonparametric regression to find the “best” bandwidth and
thus the optimal estimate. Fortunately, there are methods to select an ap-
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Single Index Model
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Figure 1.11. Single index versus logit model ‘@ SPMsim

propriate bandwidth. Here, we have chosen i = 0.7 “index units” for the
bandwidth. For comparison the shapes of both the single index (solid line)
and the logit (dashed line) link functions are shown ins in Figure 1.8. Even
though not identical they look rather similar.
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Summary

% Parametric models are fully determined up to a parameter (vec-
tor). The fitted models can easily be interpreted and estimated
accurately if the underlying assumptions are correct. If, however,
they are violated then parametric estimates may be inconsistent
and give a misleading picture of the regression relationship.

* Nonparametric models avoid restrictive assumptions of the
functional form of the regression function m. However, they
may be difficult to interpret and yield inaccurate estimates if the
number of regressors is large.

* Semiparametric models combine components of parametric and
nonparametric models, keeping the easy interpretability of the
former and retaining some of the flexibility of the latter.




5

Semiparametric and Generalized Regression
Models

In the previous part of this book we found the curse of dimensionality to be
one of the major problems that arises when using nonparametric multivariate
regression techniques. For the practitioner, a further problem is that for more
than two regressors, graphical illustration or interpretation of the results is
hardly ever possible. Truly multivariate regression models are often far too
flexible and general for making detailed inference.

5.1 Dimension Reduction

Researchers have looked for possible remedies, and a lot of effort has been al-
located to developing methods which reduce the complexity of high dimen-
sional regression problems. This refers to the reduction of dimensionality as
well as allowance for partly parametric modeling. Not surprisingly, one fol-
lows the other. The resulting models can be grouped together as so-called
semiparametric models.

All models that we will study in the following chapters can be motivated
as generalizations of well-known parametric models, mainly of the linear
model

EY|X)=m(X)=X"pB

or its generalized version
E(Y|X) =m(X) = G{X'B}. (5.1)

Here G denotes a known function, X is the d-dimensional vector of regressors
and B is a coefficient vector that is to be estimated from observations for Y
and X.
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Let us take a closer look at model (5.1). This model is known as the gener-
alized linear model. Its use and estimation are extensively treated in McCul-
lagh & Nelder (1989). Here we give only some selected motivating examples.

What is the reason for introducing this functional G, called the link? (Note
that other authors call its inverse G~! the link.) Clearly, if G is the identity we
are back in the classical linear model. As a first alternative let us consider a
quite common approach for investigating growth models. Here, the model is
often assumed to be multiplicative instead of additive, i.e.

d
_ B . _
Y = ]11}(]. e, Elog(e) =0 (5.2)
in contrast to ;
_ Bi _
Y = EX]. +§ EZ=0. (5.3)

Depending on whether we have multiplicative errors e or additive errors §,
we can transform model (5.2) to

d
E{log(Y)|X} = ) Bjlog(X;) (54)
j=1
and model (5.3) to
d
E(Y|X) =exp { Bj log(Xj)} . (5.5)
j=1

Considering now log(X) as the regressor instead of X, equation (5.5) is
equivalent to (5.1) with G(e) = exp(e). Equation (5.4), however, is a trans-
formed model, see the bibliographic notes for references on this model fam-
ily.

The most common cases in which link functions are used are binary re-
sponses (Y € {0,1}) or multicategorical (Y € {0,1,...,]}) responses and
count data (Y ~ Poisson). For the binary case, let us introduce an example
that we will study in more detail in Chapters 7 and 9.

Example 5.1.

Imagine we are interested in possible determinants of the migration deci-
sion of East Germans to leave the East for West Germany. Think of Y* as
being the net-utility from migrating from the eastern part of Germany to the
western part. Utility itself is not observable but we can observe character-
istics of the decision makers and the alternatives that affect utility. As Y* is
not observable it is called a latent variable. Let the observable characteristics
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Table 5.1. Descriptive statistics for migration data, n = 3235

Yes No (in %)

Y MIGRATION INTENTION 385 615
X7 FAMILY/FRIENDS IN WEST 85.6 11.2
X, UNEMPLOYED/JOB LOSS CERTAIN | 19.7 78.9
X3 CITY SIZE 10,000-100,000 29.3 64.2
Xy FEMALE 51.1 49.8

Min Max  Mean S.D.
X5 AGE (in years) 18 65 39.84 12.61
X¢ HOUSEHOLD INCOME (in DM) 200 4000 2194.30 752.45

be summarized in a vector X. This vector X may contain variables such as
education, age, sex and other individual characteristics. A selection of such
characteristics is shown in Table 5.1. O

In Example 5.1, we hope that the vector of regressors X captures the vari-
ables that systematically affect each person’s utility whereas unobserved or
random influences are absorbed by the term . Suppose further, that the com-
ponents of X influence net-utility through a multivariate function v(e) and
that the error term is additive. Then the latent-variable model is given by

1 ifY*>0,

0 otherwise. (5.6)

Y*=9(X)—e and Y= {
Hence, what we really observe is the binary variable Y that takes on the
value 1 if net-utility is positive (person intends to migrate) and 0 otherwise
(person intends to stay). Then some calculations lead to

PY=1|X=x)=E(Y|X=x)=Ggs{v(x)} (5.7)
with G|, being the cdf of € conditional on x.
Recall that standard parametric models assume that ¢ is independently

distributed of X with known distribution function G,y = G, and that the
index v(e) has the following simple form:

v(x) = Bo+x'B. (5.8)

The most popular distribution assumptions regarding the error are the nor-
mal and the logistic ones, leading to the so-called probit or logit models with
G(e) = ®(e) (Gaussian cdf), respectively G(e) = exp(e)/{1 +exp(e)}. We
will learn how to estimate the coefficients Sy and B in Section 5.2.

The binary choice model can be easily extended to the multicategorical
case, which is usually called discrete choice model. We will not discuss exten-
sions for multicategorical responses here. Some references for these models
are mentioned in the bibliographic notes.
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Several approaches have been proposed to reduce dimensionality or to
generalize parametric regression models in order to allow for nonparametric
relationships. Here, we state three different approaches:

e variable selection in nonparametric regression,
e generalization of (5.1) to a nonparametric link function,

e generalization of (5.1) to a semi- or nonparametric index,

which are discussed in more detail.

5.1.1 Variable Selection in Nonparametric Regression

The intention of variable selection is to choose an appropriate subset of vari-
ables, X, = (Xj,, ..., X]-r)T € X =(Xy,...,X;)", from the set of all variables
that could potentially enter the regression. Of course, the selection of the vari-
ables could be determined by the particular problem at hand, i.e. we choose
the variables according to insights provided by some underlying economic
theory. This approach, however, does not really solve the statistical side of
our modeling process. The curse of dimensionality could lead us to keep the
number of variables as low as possible. On the other hand, fewer variables
could in turn reduce the explanatory power of the model. Thus, after having
chosen a set of variables on theoretical grounds in a first step, we still do not
know how many and, more importantly, which of these variables will lead to
optimal regression results. Therefore, a variable selection method is needed
that uses a statistical selection criterion.

Vieu (1994) has proposed to use the integrated square error ISE to mea-
sure the quality of a given subset of variables. In theory, a subset of variables
is defined to be an optimal subset if it minimizes the integrated squared er-
ror:

ISE(X) = minISE(X,)

where X, C X. In practice, the ISE is replaced by its sample analog, the multi-
variate analog of the cross validation function (3.38). After the variables have
been selected, the conditional expectation of Y on X, is calculated by some
kind of standard nonparametric multivariate regression technique such as
the kernel regression estimator.

5.1.2 Nonparametric Link Function

Index models play an important role in econometrics. An index is a summary
of different variables into one number, e.g. the price index, the growth index,
or the cost-of-living index. It is clear that by summarizing all the information
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contained in the variables X, ..., X; into one “single index” term we will
greatly reduce the dimensionality of a problem. Models based on such an
index are known as single index models (SIM). In particular we will discuss
single index models of the following form:

E(Y|X) =m(X) = g{vg(X)}, (5.9)

where g(e) is an unknown link function and vg(e) an up to B specified index
function. The estimation can be carried out in two steps. First, we estimate
B. Then, using the index values for our observations, we can estimate g by
nonparametric regression. Note that estimating g(e) by regressing the Y on
vg (X) is only a one-dimensional regression problem.

Obviously, (5.9) generalizes (5.7) in that we do not assume the link func-
tion G to be known. For that purpose we replaced G by g to emphasize that
the link function needs to be estimated. Notice, that often the general index
function vg(X) is replaced by the linear index X T B. Equations (5.5) and (5.6)
together with (5.8) give examples for such linear index functions.

5.1.3 Semi- or Nonparametric Index

In many applications a canonical partitioning of the explanatory variables
exists. In particular, if there are categorical or discrete explanatory variables
we may want to keep them separate from the other design variables. Note
that only the continuous variables in the nonparametric part of the model
cause the curse of dimensionality (Delgado & Mora, 1995). In the following
chapters we will study the following models:

e Additive Model (AM)
The standard additive model is a generalization of the multiple linear re-
gression model by introducing one-dimensional nonparametric functions
in the place of the linear components. Here, the conditional expectation
of Y given X = (Xy,...,X;) " is assumed to be the sum of unknown func-
tions of the explanatory variables plus an intercept term:

d
E(Y|X) =c+)_gi(X;) (5.10)
j=1

Observe how reduction is achieved in this model: Instead of estimating
one function of several variables, as we do in completely nonparametric
regression, we merely have to estimate d functions of one-dimensional
variables X;.

e Partial Linear Model (PLM)
Suppose we only want to model parts of the index linearly. This could
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be for analytical reasons or for reasons going back to economic theory.
For instance, the impact of a dummy variable X; € {0, 1} might be suffi-
ciently explained by estimating the coefficient .

For the sake of clarity, let us now separate the d-dimensional vector of
explanatory variables into U = (Uy, ..., U,)" and T = (Ty,...,T;) . The
regression of Y on X = (U, T) is assumed to have the form:

E(Y|U,T) =U"B+ m(T) (5.11)

where m(e) is an unknown multivariate function of the vector T. Thus,
a partial linear model can be interpreted as a sum of a purely paramet-
ric part, U B, and a purely nonparametric part, n(T). Not surprisingly,
estimating B and m(e) involves the combination of both parametric and
nonparametric regression techniques.

Generalized Additive Model (GAM)

Just like the (standard) additive model, generalized additive models are
based on the sum of d nonparametric functions of the d variables X (plus
an intercept term). In addition, they allow for a known parametric link

function, G(e), that relates the sum of functions to the dependent vari-
able:

d

E(Y|X)=G {c + Zgj(xj)} : (5.12)
j=1

Generalized Partial Linear Model (GPLM)

Introducing a link G(e) for a partial linear model U B + m(T) yields the

generalized partial linear model (GPLM):

E(Y|U,T) = G{UT,B+m(T)}.

G denotes a known link function as in the GAM. In contrast to the GAM,
m(e) is possibly a multivariate nonparametric function of the variable T.

Generalized Partial Linear Partial Additive Model (GAPLM)

In high dimensions of T the estimate of the nonparametric function n(e)
in the GPLM faces the same problems as the fully nonparametric multidi-
mensional regression function estimates: the curse of dimensionality and
the practical problem of interpretability. Hence, it is useful to think about
a lower dimensional modeling of the nonparametric part. This leads to
the GAPLM with an additive structure in the nonparametric component:

q
E(Y|U,T) = G {uﬂs + Zgj(Tf)} .
j=1
Here, the gj(e) will be univariate nonparametric functions of the vari-

ables T;. In the case of an identity function G we speak of an additive
partial linear model (APLM)
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More discussion and motivation is given in the following chapters where
the different models are discussed in detail and the specific estimation proce-
dures are presented. Before proceeding with this task, however, we will first
introduce some facts about the parametric generalized linear model (GLM).
The following section is intended to give more insight into this model since
its concept and the technical details of its estimation will be necessary for its
semiparametric modification in Chapters 6 to 9.

5.2 Generalized Linear Models

Generalized linear models (GLM) extend the concept of the widely used lin-
ear regression model. The linear model assumes that the response Y (the
dependent variable) is equal to a linear combination X ' 8 and a normally
distributed error term:

Y=X"B+e

The least squares estimator B is adapted to these assumptions. However,
the restriction of linearity is far too strict for a variety of practical situa-
tions. For example, a continuous distribution of the error term implies that
the response Y has a continuous distribution as well. Hence, this standard
linear regression model fails, for example, when dealing with binary data
(Bernoulli Y) or with count data (Poisson Y).

Nelder & Wedderburn (1972) introduced the term generalized linear models
(GLM). A good resource of material on this model is the monograph of Mc-
Cullagh & Nelder (1989). The essential feature of the GLM is that the regres-
sion function, i.e. the expectation y = E(Y|X) of Y is a monotone function of
the index 7 = X ' B. We denote the function which relates  and 7 by G:

EY|X)=G(X'B) <<= u=G(n).

This function G is called the link function. (We remark that Nelder & Wed-
derburn (1972), McCullagh & Nelder (1989) actually denote G~! as the link
function.)

5.2.1 Exponential Families

In the GLM framework we assume that the distribution of Y is a member
of the exponential family. The exponential family covers a broad range of dis-
tributions, for example discrete as the Bernoulli or Poisson distribution and
continuous as the Gaussian (normal) or Gamma distribution.

A distribution is said to be a member of the exponential family if its prob-
ability function (if Y discrete) or its density function (if Y continuous) has the
structure
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f(y,9,¢>—-exp‘{yeézj§9)%c(y,¢>} (5.13)

with some specific functions a(e), b(e) and c(e). These functions differ for
the distinct Y distributions. Generally speaking, we are only interested in
estimating the parameter 6. The additional parameter ¢ is — as the variance
¢? in the linear regression — a nuisance parameter. McCullagh & Nelder
(1989) call 6 the canonical parameter.

Example 5.2.
Suppose Y is normally distributed, i.e. Y ~ N(u,0?). Hence we can write its
density as

1 -1 ) u 2 y?
py) = N exp @(y —u)°p =exp yﬁ 252 " 5g7 log(\/27m7)

and we see that the normal distribution is a member of the exponential fam-
ily with

VZ 2
a(y) =%, b(0) = =, c(y,9) = — L5 —log(v2r0),

2 202
where we set = o and 6 = p. O
Example 5.3.
Suppose now Y is Bernoulli distributed, i.e. its probability function is
N vy _ M if y=1,
PY =y) =w (1 —n) {1_y it y—o.

This can be transformed into

P(Y =y) = (&)y (I—p) =exp {ylog (1;) } (I—p)

using the logit
K ¢’
G—bg@fy> = FEiya

Thus we have an exponential family with

a(p) =1, b(0) = —log(1 — p) = log(1 +¢€%), c(y, ) = 0.

This is a distribution without an additional nuisance parameter . O

It is known that the least squares estimator B in the classical linear model
is also the maximum-likelihood estimator for normally distributed errors.
By imposing that the distribution of Y belongs to the exponential family it
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is possible to stay in the framework of maximume-likelihood for the GLM.
Moreover, the use of the general concept of exponential families has the ad-
vantage that we can derive properties of different distributions at the same
time.

To derive the maximum-likelihood algorithm in detail, we need to present
some more properties of the probability function or density function f(e).
First of all, f is a density (w.r.t. the Lebesgue measure in the continuous and
w.r.t. the counting measure in the discrete case). This allows us to write

[ fwepay =1

Under some suitable regularity conditions (it is possible to exchange differ-
entiation and integration) this yields

0= %/f(y,f?,ll))dy=/%f(y,f%lp)dy
— [{Stosrwen} swoma=e{ Gewen},

where /(y, 0, ) denotes the log-likelihood, i.e.

((y,0,9) =1log f(y,0,). (5.14)
The function %E (v,0, ) is typically called score and it is known that

»? 3 2
5{8925(%9/"’])} =—E{895(y,9,¢’)} .
This and taking first and second derivatives of (5.13) gives now

o= {55} e eGP} {0

We can conclude

E(Y) = = '(6),
Var(Y) = V(ua(y) = b" (0)a(y).

We observe that the expectation of Y only depends on 6 whereas the variance
of Y depends on the parameter of interest # and the nuisance parameter .
Typically one assumes that the factor a(¢) is identical over all observations.

5.2.2 Link Functions

Apart from the distribution of Y, the link function G is another important
part of the GLM. Recall the notation
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n=X"B, u=_G().

In the case that
X'B=n=06

the link function is called canonical link function. For models with a canon-
ical link, some theoretical and practical problems are easier to solve. Ta-
ble 5.2 summarizes characteristics for some exponential functions together
with canonical parameters 6 and their canonical link functions. Note that for
the binomial and the negative binomial distribution we assume the param-
eter k to be known. The case of binary Y is a special case of the binomial
distribution (k = 1).

What link functions can we choose apart from the canonical? For most
of the models a number of special link functions exist. For binomial Y for
example, the logistic or Gaussian link functions are often used. Recall that
a binomial model with the canonical logit link is called logit model. If the
binomial distribution is combined with the Gaussian link, it is called probit
model. A further alternative for binomial Y is the complementary log-log
link

1 = log{—log(1—p)}.

A very flexible class of link functions is the class of power functions which
are also called Box-Cox transformations (Box & Cox, 1964). They can be de-
fined for all models for which we have observations with positive mean. This
family is usually specified as

g = ut if A#0,
log 1 if A=0.

5.2.3 Iteratively Reweighted Least Squares Algorithm

As already pointed out, the estimation method of choice for a GLM is max-
imizing the likelihood function with respect to B. Suppose that we have
the vector of observations ¥ = (Y3,..., Yn)T and denote their expectations
(given X; = x;) by the vector u = (ji1,...,4n) . More precisely, we have

Hi = G(x/ B).
The log-likelihood of the vector Y is then

(Y ) =Y LY 0, 9), (5.15)
i=1

1

where 6; = 6(1;) = 6(x, B) and £(e) on the right hand side of (5.15) denotes
the individual log-likelihood contribution for each observation .
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Table 5.2. Characteristics of some GLM distributions

Notation Range Canonical ~ Variance
ofy b(6) p(0) link 6(p) V(p)  a(y)

Bernoulli 0 .
B(u) {0,1} log(1 +¢%) 1i89 logit p(l—p) 1
Binomial [0, k] 9 Kke? U u
B(k, u) integer klog(1+¢%) 14 ¢? log k—pu # (1 B F) !
Poisson [0, o0)
P(y) integer exp(0) exp(0) log U 1
Negative

) . [0, 00) 0 ke® 2 i
]i]l;lz);gl integer —klog(1l—¢e") — log K+ Wt T 1
E‘();I’T(‘;l) (—00,c0) 62/2 0 identity 1 o2
Gamma . 2
G, v) (0, 00) —log(—0) —1/8  reciprocal U 1/v
Inverse d
Gaussian (0, 0) —(—20)1/2 —1 sqrare ul o?
1G(x, 02) (—26) reciprocal

Example 5.4.

For Y; ~ N(u;,0?) we have

00, 8,9) =tog (=) = 505 (0= i

This gives the sample log-likelihood

(Y, p,0) =nlog (\/217“7> — Y (Y — )™ (5.16)
i=1
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Obviously, maximizing the log-likelihood for  under normal Y is equivalent
to minimizing the least squares criterion as the objective function. O

Example 5.5.

The calculation in Example 5.3 shows that the individual log-likelihood for
the binary responses Y; equals ¢(Y;, 0;, ¢) = Y;log(u;) + (1 —Y;)log(1 — u;).
This leads to the sample version

n
(Y, y) = ) {Yilog(pi) + (1 - Yi)log(1 — i)} (5.17)
i=1
Note that one typically defines 0-log(0) = 0. O

Let us remark that in the case where the distribution of Y itself is un-
known, but its two first moments can be specified, then the quasi-likelihood
may replace the log-likelihood (5.14). This means we assume that

E(Y) =,
Var(Y) = a(y) V(p).

The quasi-likelihood is defined by

Yy
z(y,e,lp)_a(llp) / =Y 4, (5.18)

cf. Nelder & Wedderburn (1972). If Y comes from an exponential family then
the derivatives of (5.14) and (5.18) coincide. Thus, (5.18) establishes in fact a
generalization of the likelihood approach.

Alternatively to the log-likelihood the deviance is used often. The deviance
function is defined as

DY, p, ) = 2{(Y, p™, ) = €(Y, 1, )}, (5.19)

where p"* (typically Y) is the non-restricted vector maximizing ¢(Y, e, ).
The deviance (up to the factor a()) is the GLM analog of the residual sum of
squares (RSS) in linear regression and compares the log-likelihood ¢ for the
“model” u with the maximal achievable value of ¢. Since the first term in
(5.19) is not dependent on the model and therefore not on B, minimization of
the deviance corresponds exactly to maximization of the log-likelihood.

Before deriving the algorithm to determine B, let us have a look at (5.15)
again. From ¢(Y;, 0;, ) = log f(Y;, 6;, ) and (5.13) we see

) = L HE o)} (5.20)
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Obviously, neither a(y) nor c(Y;, 1) have an influence on the maximization,
hence it is sufficient to consider

0,0 = Y2 {5 — b(8))} (521)
i=1

We will now maximize (5.21) w.r.t. B. For that purpose take the first
derivative of (5.21). This yields the gradient

D(B) = 551(Y.m) = ; (Y- 0@} 350 (5:22)

and our optimization problem is to solve

a (in general) nonlinear system of equations in f. For that reason, an iterative
method is needed. One possible solution is the Newton-Raphson algorithm, a
generalization of the Newton algorithm for the multidimensional parame-
ter. Denote () the Hessian of the log-likelihood, i.e. the matrix of second
derivatives with respect to all components of 8. Then, one Newton-Raphson
iteration step for B is

~new ~old ~old

B =B - (™) D™,

A variant of the Newton-Raphson is the Fisher scoring algorithm which re-
places the Hessian by its expectation (w.r.t. the observations Y;)

Snew Bold { ~old ~old

-1
B EH(B™)} DE™).

To present both algorithms in a more detailed way, we need again some ad-
ditional notation. Recall that we have y; = G(x/ B) = V/(6;), 7; = x; p and
b'(6;) = u;i = G(;). For the first and second derivatives of 6; we obtain (after
some calculation)

9, Gl

28" = Vi)

* ,  G)V(m) =G )V () r
app " V(p)? i

Using this, we can express the gradient of the log-likelihood as

D)= 1Y i) )
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For the Hessian we get

- (O aN (92N v e P
H(ﬁ) = 12:1: {b (6:) (aﬁel) (aﬁ61> —{Y; b (91)}W91}
(G G )V () = G )V () LT
= 121{ V) {Yi — i} e }xlxl .

Since EY; = p; it turns out that the Fisher scoring algorithm is easier: We

replace H(B) by .
B n G/ ni T
ert) = Lo Sy f -

For the sake of simplicity let us concentrate on the Fisher scoring for the
moment. Define the weight matrix

G'(m)? G’(nn)z)
Vi) " Vi) )

W = diag (

Additionally, define

Y/:(Yl_ﬂl . Yn—ﬂn)—r
G'(m) """ G'(nn)

and the design matrix

X =
X
Then one iteration step for B can be rewritten as
grew — god 4 (XTWX) "X TWY
= X"WX)"'x"wz (5.23)
where Z = (Z4, ..., Zn)T is the vector of adjusted dependent variables
Zi=x] B+ (Y — ) (G (i)} . (5.24)

The iteration stops when the parameter estimate or the log-likelihood (or
both) do not change significantly any more. We denote the resulting param-
eter estimate by B.

We see that each iteration step (5.23) is the result of a weighted least
squares regression on the adjusted variables Z; on x;. Hence, a GLM can
be estimated by iteratively reweighted least squares (IRLS). Note further that
in the linear regression model, where we have G’ = 1 and y; = 1; = x/ B,
no iteration is necessary. The Newton-Raphson algorithm can be given in a
similar way (with the more complicated weights and a different formula for
the adjusted variables). There are several remarks on the algorithm:
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e In the case of a canonical link function, the Newton-Raphson and the
Fisher scoring algorithm coincide. Here the second derivative of §; is zero.

Additionally we have
b'(0;) =G(6;) = V'(0;)=G'(0;) = V()

This also simplifies the weight matrix W.

e We still have to address the problem of starting values. A naive way
would be just to start with some arbitrary B, as e.g. B, = 0. It turns out
that we do not in fact need a starting value for B since the adjusted depen-
dent variable can be equivalently initialized by appropriate #; ¢ and y; o.
Typically the following choices are made, we refer here to McCullagh &
Nelder (1989).

— For all but binomial models:
Hip = Yiand 10 = G~ (pi0)
— For binomial models:
Hio = (Yi+ 3)/(k+1) and 1750 = G~ (pi)-
(k denotes the binomial weights, i.e. k = 1 in the Bernoulli case.)

e An estimate ¢ for the dispersion parameter i can be obtained from

o L& (Y- m)?
a(y) = Ef;iwﬁi) , (5.25)

when Ji; denotes the estimated regression function for the ith observation.

The resulting estimator B has an asymptotic normal distribution, except
of course for the standard linear regression case with normal errors where
has an exact normal distribution.

Theorem 5.1.
Under regularity conditions and as n — oo we have for the estimated coefficient
vector

V(B - B) - N(0,E).

Denote further by yi the estimator of . Then, for deviance and log-likelihood it holds
approximately: D(Y, i, ) ~ )(i_d and 2{L(Y, 1, ) — (Y, 1, )} ~ Xﬁ-

The asymptotic covariance of the coefficient B can be estimated by
s -~ 1 Gl(ﬂi lust)2 T B -~ T -1
Y=a — ——— > X; X =a(yp)-n (X' WX ,

@) |5 B Vo [ X% (§)-n (XTWx)

with the subscript last denoting the values from the last iteration step. Us-
ing this estimated covariance we can make inference about the components
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of B such as tests of significance. For selection between two nested models,
typically a likelihood ratio test (LR test) is used.

Example 5.6.

Let us illustrate the GLM using the data on East-West German migration
from Table 5.1. This is a sample of East Germans who have been surveyed in
1991 in the German Socio-Economic Panel, see GSOEP (1991). Among other
questions the participants have been asked if they can imagine moving to the
Western part of Germany or West Berlin. We give the value 1 for those who
responded positively and 0 if not.

Recall that the economic model is based on the idea that a person will
migrate if the utility (wage differential) exceeds the costs of migration. Of
course neither one of the variables, wage differential and costs, are directly
available. It is obvious that age has an important influence on migration in-
tention. Younger people will have a higher wage differential. A currently low
household income and unemployment will also increase a possible gain in
wage after migration. On the other hand, the presence of friends or family
members in the Western part of Germany will reduce the costs of migration.
We also consider a city size indicator and gender as interesting variables (Ta-
ble 5.1).

Table 5.3. Logit coefficients for migration data

Coefficients t-value
constant 0.512 2.39
FAMILY /FRIENDS 0.599 5.20
UNEMPLOYED 0.221 2.31
CITY SIZE 0.311 3.77
FEMALE -0240  -3.15
AGE -4.69-1072  -14.56
INCOME 1.42-1074 2.73

Now, we are interested in estimating the probability of migration in de-
pendence of the explanatory variables x. Recall, that

P(Y = 1|X) = E(Y|X).

A useful model is a GLM with a binary (Bernoulli) Y and the logit link for
example:

X T
Py =1X =) = Gix'B) = TR
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Table 5.3 shows in the middle column the results of this logit fit. The migra-
tion intention is definitely determined by age. However, also the unemploy-
ment, city size and household income variables are highly significant, which

is indicated by their high t-values (Bj/ v/ ij]'). O
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Bibliographic Notes

For general aspects on semiparametric regression we refer to the textbooks
of Pagan & Ullah (1999), Yatchew (2003), Ruppert, Wand & Carroll (1990).
Comprehensive presentations of the generalized linear model can be found
in Dobson (2001), McCullagh & Nelder (1989) and Hardin & Hilbe (2001).
For a more compact introduction see Miiller (2004), Venables & Ripley (2002,
Chapter 7) and Gill (2000).

In the following notes, we give some references for topics we consider
related to the considered models. References for specific models are listed in
the relevant chapters later on.

The transformation model in (5.4) was first introduced in an econometric
context by Box & Cox (1964). The discussion was revised many years later by
Bickel & Doksum (1981). In a more recent paper, Horowitz (1996) estimates
this model by considering a nonparametric transformation.

For a further reference of dimension reduction in nonparametric estima-
tion we mention projection pursuit and sliced inverse regression. The projec-
tion pursuit algorithm is introduced and investigated in detail in Friedman
& Stuetzle (1981) and Friedman (1987). Sliced inverse regression means the
estimation of Y = m (X' B, X' B,,..., X" B, €), where ¢ is the disturbance
term and k the unknown dimension of the model. Introduction and theory
can be found e.g. in Duan & Li (1991), Li (1991) or Hsing & Carroll (1992).

More sophisticated models like censored or truncated dependent vari-
ables, models with endogenous variables or simultaneous equation systems
(Maddala, 1983) will not be dealt with in this book. There are two reasons:
On one hand the non- or semiparametric estimation of those models is much
more complicated and technical than most of what we aim to introduce in
this book. Here we only prepare the basics enabling the reader to consider
more special problems. On the other hand, most of these estimation problems
are rather particular and the treatment of them presupposes good knowledge
of the considered problem and its solution in the parametric world. Instead
of extending the book considerably by setting out this topic, we limit our-
selves here to some more detailed bibliographic notes.

The non- and semiparametric literature on this is mainly separated into
two directions, parametric modeling with unknown error distribution or
modeling non-/semiparametrically the functional forms. In the second case
a principal question is the identifiability of the model.

For an introduction to the problem of truncation, sample selection and
limited dependent data, see Heckman (1976) and Heckman (1979). See also
the survey of Amemiya (1984). An interesting approach was presented by
Ahn & Powell (1993) for parametric censored selection models with nonpara-



Bibliographic Notes 163

metric selection mechanism. This idea has been extended to general pairwise
difference estimators for censored and truncated models in Honoré & Pow-
ell (1994). A mostly comprehensive survey about parametric and semipara-
metric methods for parametric models with non- or semiparametric selection
bias can be found in Vella (1998). Even though implementation of and the-
ory on these methods is often quite complicated, some of them turned out to
perform reasonably well.

The second approach, i.e. relaxing the functional forms of the functions
of interest, turned out to be much more complicated. To our knowledge, the
first articles on the estimation of triangular simultaneous equation systems
have been Newey, Powell & Vella (1999) and Rodriguez-P6o, Sperlich &
Fernandez (1999), from which the former is purely nonparametric, whereas
the latter considers nested simultaneous equation systems and needs to spec-
ify the error distribution for identifiability reasons. Finally, Lewbel & Linton
(2002) found a smart way to identify nonparametric censored and truncated
regression functions; however, their estimation procedure is quite technical.
Note that so far neither their estimator nor the one of Newey, Powell & Vella
(1999) have been proved to perform well in practice.
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Exercises

Exercise 5.1. Assume model (5.6) and consider X and ¢ to be independent.
Show that
P(Y = 1|X) = E(Y|X) = Ge{o(X)}

where G, denotes the cdf of . Explain that (5.7) holds if we do not assume
independence of X and e.

Exercise 5.2. Recall the paragraph about partial linear models. Why may it
be sufficient to include $;X; in the model when X is binary? What would
you do if X; were categorical?

Exercise 5.3. Compute H(f) and EH(p) for the logit and probit models.

Exercise 5.4. Verify the canonical link functions for the logit and Poisson
model.

Exercise 5.5. Recall that in Example 5.6 we have fitted the model
E(Y|X) = P(Y =1|X) = G(X "),

where G is the standard logistic cdf. We motivated this model through the
latent-variable model Y* = X ' B — ¢ with ¢ having cdf G. How does the logit
model change if the latent-variable model is multiplied by a factor ¢? What
does this imply for the identification of the coefficient vector §?
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Summary

% The basis for many semiparametric regression models is the gen-
eralized linear model (GLM), which is given by

E(Y|X) = G{X'B}.

Here, B denotes the parameter vector to be estimated and G
denotes a known link function. Prominent examples of this type
of regression are binary choice models (logit or probit) or count
data models (Poisson regression).

* The GLM can be generalized in several ways: Considering
an unknown smooth link function (instead of G) leads to the
single index model (SIM). Assuming a nonparametric additive
argument of G leads to the generalized additive model (GAM),
whereas a combination of additive linear and nonparametric
components in the argument of G give a generalized partial lin-
ear model (GPLM) or generalized partial linear partial additive
model (GAPLM). If there is no link function (or G is the identity
function) then we speak of additive models (AM) or partial
linear models (PLM) or additive partial linear models (APLM).

% The estimation of the GLM is performed through an interac-
tive algorithm. This algorithm, the iteratively reweighted least
squares (IRLS) algorithm, applies weighted least squares to the
adjusted dependent variable Z in each iteration step:

’Bnew _ (Xwa)—lewZ

This numerical approach needs to be appropriately modified for
estimating the semiparametric modifications of the GLM.
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