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Abstract. The tensile strength of solid materials is one of the most important param-
eter describing a behavior of the material under external mechanical loading and thus its
knowledge is of great practical importance. However, the direct measurement of tensile
strength especially for brittle materials is quite difficult and only limited results are avail-
able. To cope with this situation various methods of indirect measurements have been
proposed among others the, so called Brazilian test is the most popular. The method
relies on diametrically loading of disc-like sample of the brittle material until it splits
apart due to a induced tensile stress. In this paper we report our effort of describing the
fracturing process during the Brazilian test from the “microscopic”point of view. For this
purpose we use an advanced implementation of the Discrete Element Method - the ESyS-
Particle software. We represent rock specimen as a set of interacting spherical particles
which mimic grains of real rock material. We have observed that the maximum loading
force which sample can withstand almost linearly scales up with a ratio of maximum-to-
minimum particles diameters.

1 INTRODUCTION

The tensile strength of solid materials is one of the most important parameter describ-
ing a behavior of the material under mechanical load and thus its knowledge is of great
practical importance. However, the direct measurement of tensile strength, especially for
brittle materials is quite difficult and thus only limited results are available. To cope with
this situation [3] have proposed an indirect method of estimation of the tensile strength
know as the Brazilian test. The method relies on diametrically loading of disc-like sample
of the brittle material until it splits apart due to induced tensile stress as sketched in
Fig. 1. Due to its simplicity and low cost of sample preparation it became very popular
and has got a recommendation of the International Society for Rock Mechanics Commis-
sion as the standard method of the tensile strength estimation [9]. The justification of
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the method comes from theory of elasticity which predicts that for an ideal homogeneous
elastic cylinder of Radius R and length L subjected to a diametrically linear loading P
the stress inside the body reads [11]:
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πRL
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2P
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(
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(1)

where x, y refer to coordinates shown in Fig. 1. As it follows from above, at the loading
plane (x = 0) the σx and σy are normal stresses (τxy = 0) perpendicular and parallel to
the loading plane, the tensile stress σx is constant and reads

σT =
P

πRL
(2)

while the compressional stress σy increases from 3σx at the center of the disc to infinity
at the loading point.

These formulas have been extended to a more realistic laboratory situations taking
into account loading over a finite, bended surface, non-homogeneity and anisotropy of the
material, to name a few extensions. The usefulness and simplicity of the Brazilian test
follows directly from Eq. 2 which predicts that tensile is proportional to the loading. Thus,
assuming that splitting of the samples occurs when tensile stress reaches the material
tensile strength, it can easily be estimated from Eq. 2 by recording the loading force when
sample crushes.

The Brazilian test method has gain a lot of popularity not only because of simplicity
of its application but also due to more fundamental questions concerning mechanisms of
creation and development of the tensile fractures under a simple initial and boundary
conditions. However, it has received also a lot of criticism due to lack of robustness
and proximity. This last issue arises from the fact that the Brazilian test results show a
systematic overestimation of the tensile toughness with respect to values obtained in direct
measurements. Thus, there is a lot of ongoing discussion on reasons of this discrepancies.
There is also still an open question about dynamics of nucleation and development of the
main tensile and secondary cracks resulting in a final breaking apart of the specimen. The
classical theory predicts creation of such crack in a center of the sample where compressing
stress is the smallest. After nucleation the crack is expected to propagate along the loading
plane outwards. However, in many experiments the crack was observed to nucleate not in
center but close to sample surface [12]. Wings-type and secondary cracks have also been
observed [5]. Another open question is which criterion should be used for estimation of
the tensile strength. The most popular approach is based on the stress criterion according
to which the material breaking occurs when tensile stress reaches the critical value and
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Eq. 2 is then directly used. However, this is fully arbitrary choice. Another, physically
justified the strain criterion was proposed by [17]. Both criteria are equivalent (at least
from mathematical point of view) for perfectly elastic media but not if large deformation
effects are taken into account.

Theoretical analysis of the Brazilian test method are based mainly on the classical con-
tinues mechanics [6, 8, 14] and are limited to the simplest cases. Analysis of more realistic
cases can be done only numerically. Authors of such studies use most often different vari-
ants of the Finite and/or Boundary Element Methods [15, 4, 18]. Only recently, a simple
but very interesting analysis based on the Fiber Bundle Method has been presented [13].
In this paper we analyze some of the above mentioned issues from a “molecular” point of
view using an advanced implementation of the Discrete Element Method (DEM) [2]. The
method represents the medium as a set of interacting elements “molecules” and is partic-
ularly convenient for describing process of medium fragmentation. Moreover, it has been
argued [16] that such representation is more natural for describing rock materials than
methods based on the continuous mechanics. The used EsyS-Particle software allows a
full 3D analysis of stress and displacement evolution in the sample under external loading,
takes into account possible large deformations like the classical Finite Element approach
and supports description of the material fragmentation and thus cracks nucleation and
its temporal evolution [1].
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Figure 1: The sketch of the simulation setup used in numerical simulations. The horizontal loading
plates are assumed to be perfectly rigid. The lower plate is fixed while the upper one moves downwards
with constant velocity V providing the diameter loading of the disc.
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2 DEM SIMULATIONS

2.1 Simulation setup

We have performed a number of numerical simulations of Brazilian test experiment
considering the specimen in a form of disc (cylinder) of diameter 10 mm and thickness 5
mm, diametrically loaded as it is shown in Fig. 1. The sample was build of spherical par-
ticles of varying size within predefined ranges. The maximum radius of used particles was
always kept fixed and equal to Rmax = 0.2 mm. The minimum radii were varying among
simulations in a range from 0.027 mm up to 0.1 mm. The external load was supplied by
two perfectly rigid plates. The lower plate was fixed while the upper one moved downward
with constant velocity V=4mm/sec. Simulations ended when the vertical displacement
of the upper plate reached the predefined level of 0.2 mm, selected as a large enough to
include the sample breaking and a beginning of the post failure stage. In Fig. 2 examples
of the facial views of one of the sample prior and after creating a main tensile crack (but
still before complete breaking of the sample) are shown. During loading we have recorded
at each time step the vertical position of the upper plate and total vertical force acting
on it, so a stress - strain relation was continuously monitored. Besides that, we have
also recorded total kinetic energy of particles and total potential energy of inter-particles
interactions.

Figure 2: An example view of the sample face prior to loading (left) and after creating a tensile crack
(right) in the middle of the sample.

The most nontrivial element of any DEM simulation is defining the particle interac-
tions and breaking conditions. We have used the model of “elastic-brittle interactions”
supported by ESyS-Particle and illustrated in Fig. 3.
In this model the near-neighborhood particles interact with each other with repulsive/cohesive
radial forces and non-radial “shearing” ones. If interacting particles separate by fixed dis-
tance (in terms of percentage of their radii) the interacting bond is broken and interaction
is reset to zero. Breaking of shearing forces is based on the Coulomb-Mohr criterion [2].
Under these assumptions our specimen represents a medium which for small external load-
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Figure 3: A sketch of forces and moments between particles interacting according to used the advanced
interaction model implemented in ESyS-Particle (after [2]).

ing behaves as an ideal elastic body. For larger loads, when some inter-particles bonds
break and particles can significantly move away from their initial location the material
exhibits some plasticity. Finally, in a large stress concentration regions the particles can
separates “en bloc” due to a significant stress redistribution when interaction bonds break
(a similar effect is observed in soft-clamp Fiber Bundle Model [10] which finally leads to
an initiation and development of cracks. This way, with this simple setup we can simulate
behavior of a variety of solid materials.

In the current simulations we have concentrated on a question how size of particles
building the sample influences simulation results. For this reason we have kept particle
interactions fixed and also the loading rate was kept constant. The build disc samples
consisted from about 5 · 104 up to almost 2 · 106 particles and typical 5 · 104 time steps
were required to break the samples apart. The time step we have used for the temporal
integration (evolution) have been chosen as the compromise between numerical stability
and computational time and reads dt = 5·10−6. With this simulation setup computational
time on 10 cores CPU workstation ranged between 6 and 90 hours.

2.2 Simulation results

Let us begin the discussion of obtained results from the analysis of a relation between
applied load and vertical displacements (strain) of the sample. The scaled together (for
presentation purpose) strain-stress relations for five simulations are shown in Fig. 4 and
few particular features are clearly visible in this figure.

Firstly, the maximum attained values of load Pmax, at which samples break apart
strongly depend on the minimum size Rmin of particles building the sample. On the
contrary, the critical strain dc at which fmax is reached feeble depends on Rmin ranging
from about 0.1 mm up to 0.12 mm. In the consequence the slope of the initial part of
the strain-stress curves also significantly varies with Rmin. Secondly, for small strains the
response of the sample to the load is essentially elastic, manifesting itself in an almost
linear strain-stress dependences. The visible undulation of the curve is partially due to
an acoustic wave generated at the beginning of loading when the upper plate “hits” the
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Figure 4: The load against the vertical displacement (strain) for five different samples composed of
particles with different minimum radii Rmin. The maximum radius was fixed for all samples Rmax =
0.2 mm. The weak undulation in first part of curve is mainly due to acoustic waves generated by abrupt
beginning of loading of the samples.

sample with the constant speed and partially due to a numerical noise. Only for very small
strains (less than 0.01mm) this linearity is broken and a “flattening” of the stress-strain
curves is observed. This is a purely numerical effect connected to a non-optimum initial
packing of particles in the samples. Thirdly, a departure from the elastic behavior appears
at larger strains and manifest itself as a flattening of the curves. This plastic regime starts
earlier for samples built of larger particles. In case of samples with Rmin = 0.03 mm it
appears just before reaching the maximum withstand load, while for samples built of
particles with Rmin ∼ 0.1 ∼ 0.06 mm it starts almost in half of the strain value at given
sample breaks. Finally, in the post failure stage the stress drop rate is smaller for samples
built of larger particles. It is interesting to note, that the post failure stress reaches
minimum (complete breakage of the sample) for similar values of strain in all cases. To
summarize, we have observed a significant mechanical strengthening for samples composed
of smaller particles with respect to softer samples build of larger particles. However, the
vertical deformation at which samples break apart only weakly depends on Rmin.

In the next step we have analyzed variation of number of broken inter-particle bonds
with progressing load. The results are shown in Fig. 5 where separately scaled number
of broken bonds for five considered samples are shown together. The behavior of plotted
curves is very similar in a narrow vicinity of critical strain dc when samples start to
break for all but one cases . An abrupt increase of bonds breaking starts just around
reaching critical load Pmax and continue until the sample fully breaks and load reaches
minimum value. Only for the very soft sample (Rmin = 0.1) inter-particle bonds start
to break massively earlier and the process goes smoother through larger range of sample
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Figure 5: Number of broken inter-particle bonds as the function of the sample vertical deformation.

deformations. The particle composition of the samples influences significantly the initial
part of curves corresponding to elastic behavior of samples. For deformations smaller than
0.1 mm we clearly see in Fig. 5 that smaller particles are used to build the sample, sooner
inter-particle bonds starts to break. Simultaneously, smaller Rmin is, larger hardening of
a sample before the final breakage is observed. This effect manifests itself by flattening of
curves when strain approaches 0.1 mm. Since during the simulations interaction bonds
were not allowed to re-heal after breaking, the observed initial increase of bonds breaking
can be interpreted as beginning of a visco-plastic deformation of the samples. Let us note,
that this effect is quite feeble and can hardly be visible in strain-stress curves in Fig. 4.
The degree of this induced viscosity significantly depends on the particles size. From a
physical point of view this observation suggests, that at intermediate values of loading
some dislocations are induced in the samples. Indeed, such dislocations are more probable
for smaller particles and for this reason viscous behavior would start earlier for samples
with smaller Rmin. Moreover, the particle rearrangement by dislocations very soon leads
to denser particle packing and in the consequence to the hardening of samples. Finally,
for the very small deformation we observe no particle bonds breaking. This is a perfectly
elastic regime.

Next, let us consider the change in the potential energy of particle interaction and the
particles kinetic energy (without rotational energy) with progressing vertical deformation.
The results are shown in Fig. 6.

In the first approximation one can assume that an external compressional load induces
harmonic repulsive forces between interacting particles. In consequence, a change of total
potential energy should be proportional to the squared sample deformation. Such a be-
havior is indeed visible in the right panel in Fig. 6 for small and intermediate deformations.
For larger deformations when the rupture process nucleate potential energy starts to be
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Figure 6: The absolute value of the kinetic (left) and potential energy of particles interactions (right)
scaled to the maximum value obtained in all simulations.

released and diminishes. Besides these changes of the potential energy with deformation
is different for samples with different Rmin. It increases most rapidly for samples build of
smaller particles and reaches larger values, as expected. The samples build of smaller par-
ticle can accumulate larger elastic deformation (potential) energy. In consequence, taking
into account that the breaking (critical) strain dc only slightly increases with decreasing
Rmin and deformation at which samples breaks apart is almost the same for all samples
the potential energy released is more abrupt for samples with smaller Rmin. Thus, we can
expect that breaking process will go faster for samples build of smaller particles.

As far as the kinetic energy Ekin is concerned we can see in the left panel of Fig. 6 that
it is quite stable in the first phase of loading. Some increase and variations of Ekin at
the intermediate loading can be attributed to the dislocations processes discussed above.
During the breaking stage it increases significantly due to a release of potential energy.
The changes (mostly decrease) of Ekin in the post-failure stage are more complex due to
a possible secondary cracking of the samples [5]. However, at this stage, the behavior of
Ekin is also strongly influenced by a numerical dumping implemented in the used code
and thus include a non-physical component. For this reason we do not analyze this stage
any more.

Considering energy transformations during the loading and breaking stage of the pro-
cess we have analyzed the difference between work of the external load and sum of the
kinetic and potential energies. The obtained results are shown in Fig. 7

For small, elastic deformations the work of the loading force (∆W ) fully converts
into the elastic (ET = Ekin + Epot) energy. In consequence Γ = ∆W − ET vanish. At
the intermediate loading stage we observe a monotonic increase of Γ with the sample
deformation. This is a signature of non-elastic transfer of external energy. We attache it
to breaking of inter-particle interactions bonds and particle dislocations. In real materials
at this stage the external energy is also efficiently transformed into the heat. However our
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Figure 7: The difference between external load work (∆W ) and sum of kinetic and potential energy.
The obtained values were scaled by the largest value obtained in all simulations.

simulations do not take into account thermal effects yet. It is interesting to observe that
at this stage Γ exhibits a strong dependences on particle size (Rmin). During the braking
stage (0.11 < dl < 0.14) Γ further increases and finally saturates, as expected.

2.3 Scaling

Discussing results shown in Fig. 4 we have noticed that the maximum load the sample
can withstand depends significantly on Rmin. To analyze this issue more in depth we have
plotted in Fig. 8 the maximum loads Pmax, dc, and the potential energy at the dc strain
for all considered samples.

The obtained results show that the dependence of Pmax on inverse of Rmin is almost
perfectly linear. Very similar behavior exhibits potential energy calculated for the strain
when load reaches its maximum value. The critical strain dc also almost linearly but,
much weaker depends on the Rmax/Rmin ratio. At the moment we have no explanation
of this observed Pmax (potential energy) scaling. Actually, a preliminary analysis carried
out for a larger set of samples with different Rmax confirmed that with a quite good
approximation Pmax depends only on the ratio Rmax/Rmin and thus the reported scaling
holds.

3 CONCLUSIONS

With the performed numerical simulations we have reached a few goals. From the
technical point of view we have proved that ESyS-Particle software is working correctly
with this type problems provided the most advanced particle interaction model is used.
The obtained results are in a full agreement with similar results obtained both analytically
as well as by a more traditional FEM methods. We have also demonstrated exceptional
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Figure 8: The maximum critical load, critical strain dc and potential energy at dc strain as the function
of γ = Rmax/rmin.

abilities of the DEM method with solving problems including sample fragmentation. The
method has allowed a detailed monitoring of internal microscopic state of loaded sample
including changes of particles kinetic and potential energies to name a few. From the
physical point of, we have got an insight into creation of the tensile crack under the
simulated laboratory conditions. We were able to monitor a nucleation and temporal
evolution of tensile crack which finally lead to breaking apart of Brazilian test samples.
Following an evolution of the total kinetic and potential energies during lading we were
able to identify a few stages in a response of the samples to constant speed loading.
At the beginning of loading the elastic response of the samples was clearly visible. For
the intermediate loading the samples exhibited a visco-elastic properties due to inducing
particles dislocations. At the end of this stage large dislocation occurring en block resulted
in a visible plastic behavior of the samples and finally lead to crack nucleation and breaking
the sample apart. The most interesting is, however, observing how size of used particles
influenced each of the above stage. Although we used relatively small range of particle
sizes the obtained results clearly shows that the most sensitive to the material composition
is the intermediate loading stage when dislocations start to change the properties of
materials and lead to a crack nucleation. On the other hand, the rather weak dependence
of the critical strain and the strain when the crack fully breaks the sample into two pieces
shows that this failure stage is rather insensitive to the material composition. However,
in our judgement, the most important result of the performed simulations is reporting
of the scaling of the critical load which the sample can withstand with inverse of the
size of the smallest particles building the sample. This unexpected observation is further
investigating and results will soon be published elsewhere. At this time we have no
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physical explanation of the observed scaling.
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