Home page of
Mariusz Białecki
What You can find here:
About myself
Fields of interest
List of my publications
Related and useful links
About myself
Name: Mariusz BIAŁECKI
Academic Degree: Ph. D in Physics
obtained at
Institute of Theoretical Physics, Warsaw University , Warsaw, Poland
Current Appointment and Status: Assistant Professor in
Institute of Geophysics ,
Polish Academy of Sciences
I was awarded a two years fellowship by the
Japan Society for the Promotion of Science
within the Postdoctoral Fellowship Program for Foreign Researchers.
My host researcher is professor Tetsuji Tokihiro and from September 2005 to August 2007 I'm visiting
Graduate School of Mathematical Sciences ,
University of Tokyo .
Previous Employment:
Institute of Theoretical Physics,
University in Białystok , Białystok, Poland (Page in Polish)
Institute of Theoretical Physics, Warsaw University , Warsaw, Poland
UP
Fields of interest
Algebraic aspects of integrable systems
Integrable cellular automata
Applications of integrable systems to geophysics
Models based predictions
UP
List of my publications
Papers
M. Białecki
"Motzkin numbers out of Random Domino Automaton"
arXiv:1102.0437 [math-ph]
Z. Czechowski and M. Białecki
"Ito equations out of domino cellular automaton with efficiency parameters"
Acta Geophys. 60, No. 3 (2012) 846-857.
Z. Czechowski and M. Białecki
"Three-level description of the domino cellular automaton"
J. Phys. A: Math. Theor. 45 (2012) 155101 (19pp).
M. Białecki and Z. Czechowski
"Analytic approach to stochastic cellular automata:
exponential and inverse power distributions out of Random Domino Automaton"
arXiv:1009.4609 [nlin.CG]
M. Białecki and Z. Czechowski
"On a simple stochastic cellular automaton with avalanches: simulation and analytical results"
Chapter 5 in
V. De Rubeis, Z. Czechowski and R. Teisseyre (Eds.)
'Synchronization and triggering: from fracture to earthquake processes' ,
Springer 2010, pp. 63-75.
Z. Czechowski and M. Białecki
"Ito equations as macroscopic stochastic models of geophysical phenomena - construction of the models
on a base of time series and analytical derivation"
Chapter 6 in
V. De Rubeis, Z. Czechowski and R. Teisseyre (Eds.)
'Synchronization and triggering: from fracture to earthquake processes' ,
Springer 2010, pp. 77-96.
M. Białecki
"On discrete Sato-like theory with some specializations for finite fields"
RIMS Kokyuroku, 1650 (2009)
154-161.
M. Białecki and J.J.C. Nimmo
"On pattern structures of the N-soliton solution of the discrete KP equation over a finite field"
J. Phys. A: Math. Theor. 40 (2007) 949-959.
M. Białecki
"Towards a discrete theory of defects"
Chapter 7 in
R. Teisseyre, M. Takeo and E. Majewski (Eds.)
'Earthquake Source Asymmetry, Structural Media and Rotation Effects'
Springer 2006, pp. 67-76.
R. Teisseyre, M. Białecki and M. Górski
"Degenerated Asymmetric Continuum Theory"
Chapter 5 in
R. Teisseyre, M. Takeo and E. Majewski (Eds.)
'Earthquake Source Asymmetry, Structural Media and Rotation Effects'
Springer 2006, pp. 43-55.
R. Teisseyre, M. Białecki and M. Górski
"Degenerated mechanics in a homogeneous continuum: Potentials for spin and twist"
Acta Geophys. Polon. 53, No. 3 (2005) 219-230.
M.Białecki "Integrable 1D Toda cellular automata"
J. Nonlin. Math. Phys. Vol. 12, Suppl. 2 (2005) 28-35.
M. Białecki "Integrable KP and KdV cellular automata out of a hyperelliptic curve"
Glasgow Math. J. 47A (2005) 33-44.
M. Białecki, A. Doliwa
"Algebro-Geometric Solution of the Discrete KP Equation
over a Finite Field out of a Hyperelliptic Curve"
Commun. Math. Phys. 253 (2005) 157-170.
M. Białecki, A. Doliwa
"The discrete KP and KdV equations over finite fields"
Theor. Math. Phys. 137 (2003) 1412-1418.
A. Doliwa, M. Białecki, P. Klimczewski
"The Hirota equation over finite fields. Algebro-geometric approach and multisoliton solution"
J. Phys. A: Math. Gen.
36 (2003) 4827-4839.
Preprints
UP
Related and usefull links
Mirror SCI
Integrability Links
UP